Инд. авторы: Sedov E.V., Redyuk A.A., Fedoruk M.P., Gelash A.A., Frumin L.L., Turitsyn S.K.
Заглавие: Soliton content in the standard optical OFDM signal
Библ. ссылка: Sedov E.V., Redyuk A.A., Fedoruk M.P., Gelash A.A., Frumin L.L., Turitsyn S.K. Soliton content in the standard optical OFDM signal // Optics Letters. - 2018. - Vol.43. - Iss. 24. - P.5985-5988. - ISSN 0146-9592. - EISSN 1539-4794.
Внешние системы: DOI: 10.1364/OL.43.005985; РИНЦ: 37216851; PubMed: "30547986"; SCOPUS: 2-s2.0-85058748600; WoS: 000453212500021;
Реферат: eng: The nonlinear Schrödinger equation (NLSE) is often used as a master path-average model for fiber-optic transmission lines. In general, the NLSE describes the co-existence of dispersive waves and soliton pulses. The propagation of a signal in such a nonlinear channel is conceptually different from linear systems. We demonstrate here that the conventional orthogonal frequency-division multiplexing (OFDM) input optical signal at powers typical for modern communication systems might have soliton components statistically created by the random process corresponding to the information content. Applying the Zakharov–Shabat spectral problem to a single OFDM symbol with multiple subcarriers, we quantify the effect of the statistical soliton occurrence in such an information-bearing optical signal. Moreover, we observe that at signal powers optimal for transmission, an OFDM symbol incorporates multiple solitons with high probability. The considered optical communication example is relevant to a more general physical problem of the generation of coherent structures from noise. © 2018 Optical Society of America.
Ключевые слова: Optical fiber communication; Spectral problem; Nonlinear channel; Information contents; High probability; Fiber-optic transmission line; Dispersive waves; Coherent structure; Solitons; Random processes; Orthogonal frequency division multiplexing; Nonlinear equations; Linear systems; Dinger equation;
Издано: 2018
Физ. характеристика: с.5985-5988
Цитирование: 1. G. P. Agrawal. The Nonlinear Fiber Optics. 4th ed. Academic, 2007. 2. A. Hasegawa, Y. Kodama // Opt. Lett. 1990. V. 15. P. 1443 3. L. F. Mollenauer, J. Gordon. Solitons in Optical Fiber. Academic, 2006. 4. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, S. K. Turitsyn // Phys. Rev. Lett. 2006. V. 96. P. 023902 5. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, S. A. Derevyanko // Optica. 2017. V. 4. P. 307 6. V. E. Zakharov, A. B. Shabat // Sov. Phys. JETP. 1972. V. 34. P. 62 7. S. Manakov // Sov. Phys. JETP. 1974. V. 38. P. 693 8. Y. S. Kivshar // J. Phys. A. 1989. V. 22. P. 337 9. J. Burzlaff // J. Phys. A. 1988. V. 21. P. 561 10. S. K. Turitsyn, S. A. Derevyanko // Phys. Rev. A. 2008. V. 78. P. 063819 11. J. E. Prilepsky, S. A. Derevyanko, S. K. Turitsyn // J. Opt. Soc. Am. B. 2007. V. 24. P. 1254 12. S. Derevyanko, E. Small // Phys. Rev. A. 2012. V. 85. P. 053816 13. J. G. Proakis. Digital Communications. 4th ed. McGraw-Hill, 2000. 14. S. Burtsev, R. Camassa, I. Timofeyev // J. Comput. Phys. 1998. V. 147. P. 166 15. G. Boffetta, A. R. Osborne // J. Comput. Phys. 1992. V. 102. P. 252 16. A. Vasylchenkova, J. E. Prilepsky, S. K. Turitsyn // Opt. Lett. 2018. V. 43. P. 3690 17. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold // IEEE Photonics Technol. Lett. 2012. V. 24. P. 61 18. S. Derevyanko, A. Redyuk, S. Vergeles, S. K. Turitsyn // APL Photonics. 2018. V. 3. P. 060801 19. V. E. Zakharov // Stud. Appl. Math. 2009. V. 122. P. 219 20. S. Randoux, P. Suret, G. El // Sci. Rep. 2016. V. 6. P. 29238 21. P. Suret, R. El-Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, S. Bielawski // Nat. Commun. 2016. V. 7. P. 13136