Инд. авторы: | Гарагулова А.К., Горбачева Д.О., Чирков Д.В. |
Заглавие: | Сравнение генетических алгоритмов moga и nsga-ii на задаче оптимизации формы рабочего колеса гидротурбины |
Библ. ссылка: | Гарагулова А.К., Горбачева Д.О., Чирков Д.В. Сравнение генетических алгоритмов moga и nsga-ii на задаче оптимизации формы рабочего колеса гидротурбины // Вычислительные технологии. - 2018. - Т.23. - № 5. - С.21-36. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | DOI: 10.25743/ICT.2018.23.5.003; РИНЦ: 36319344; |
Реферат: | eng: Purpose. The main goal of this article is to compare two popular multi-objective genetic algorithms MOGA and NSGA-II by solving test problems and a practical problem of hydraulic turbine runner optimization. Modification of NSGA-II called NSGA-IIm is also considered. The major problem is to compare convergence rates of approximate solution to the exact Pareto front. Methodology. The genetic algorithms MOGA and NSGA-II are described in detail. The modified algorithm NSGA-IIm is NSGA-II with the recombination and mutation operators taken from the MOGA algorithm. The known problems ZDT3 (2 objectives, 30 and 12 parameters, no constraints) and OSY (2 objectives, 6 parameters, 6 constraints) are taken as test problems. These algorithms are compared by solving runner optimization problem with 24 free parameters and 2 or 3 objectives. To compare the algorithms, a metric characterizing the distance from the approximate Pareto front to the exact one is introduced. Since the algorithms are stochastic in nature, the value of the metric was averaged over 100 runs of the algorithm. In the two-objective runner optimization problem the metric value was averaged over 3 runs of the algorithm. Findings. Solving the test problems, it was found that in the first 50 generations the MOGA algorithm converges faster than other algorithms, but after 50 generations the NSGA-II algorithm has shown the best result. The MOGA algorithm gives an approximate front containing more solutions than NSGA-II. When solving the two-objective and the three-objective runner optimization problem the similar results were obtained. The approximate Pareto front, obtained by the MOGA algorithm, is distributed more uniformly than other algorithms and contains a larger number of solutions. The advantage of the algorithms NSGA-II and NSGA-IIm is a slightly better definition of extreme values of target functionals. However, the obtained differences are not very significant. Originality/value. Obtained results show that both MOGA and NSGA-II are very similar in terms of convergence rate and can be applied for solving complex engineering problems. rus: Проведено сравнение генетических алгоритмов MOGA и NSGA-II на тестовых задачах и задаче оптимизации формы рабочего колеса гидротурбины. Рассмотрен модифицированный алгоритм NSGA-IIm, в котором операторы рекомбинации и мутации заимствованы из MOGA. Для сравнения скорости сходимости алгоритмов использована метрика, характеризующая расстояние от приближенного фронта Парето до точного. Представлены результаты решения тестовой задачи 𝑍𝐷𝑇3 без ограничений с 12 и 30 параметрами и тестовой задачи 𝑂𝑆𝑌 с ограничениями. Алгоритмы сравниваются на задаче оптимизации формы радиально-осевого рабочего колеса гидротурбины с 24 свободными параметрами. Получены схожие результаты скорости и сходимости. |
Ключевые слова: | genetic algorithm; генетический алгоритм; MOGA; NSGA-II; |
Издано: | 2018 |
Физ. характеристика: | с.21-36 |
Цитирование: | 1. Nakamura, K., Kurosawa, S. Design optimization of a high specific speed Francis turbine using multi-objective genetic algorithm // Intern. J. of Fluid Machinery and Systems. 2009. Vol. 2, No. 2. P. 102-109. 2. Численное моделирование течений в турбомашинах / Черный С.Г., Чирков Д.В., Лапин В.Н. и др. Новосибирск: Наука, 2006. 202 с. 3. Lyutov, A.E., Chirkov, D.V., Skorospelov, V.A. et al. Coupled multipoint shape optimization of runner and draft tube of hydraulic turbines // J. Fluids Eng. 2015. Vol. 137, iss. 11. Article Number: 111302. 11 p. 4. Chirkov, D.V., Ankudinova, A.S., Kryukov, A.E. et al. Multi-objective shape optimization of a hydraulic turbine runner using efficiency, strength and weight criteria // Structural and Multidisciplinary Optimization. 2018. Vol. 58, iss. 2. P. 627-640. 5. Fonseca, C.M., Fleming, P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization // Proc. of the 5th Intern. Conf. on Genetic Algorithms, Urbana-Champaign, IL, USA, 1993. San Francisco, CA, USA: Morgan Kaufmann Publ., 1993. P. 416-423. 6. Horn, J., Nafpliotis, N. Multiobjective optimization using the niched Pareto genetic algorithm // Proc. of the First IEEE Conf. on Evolutionary Comput., IEEE World Congress on Comput. Intelligence, Urbana Illinois, 1993. Piscataway, New Jersey: IEEE Service Center, 1994. Report № 93005. 33 p. 7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II // IEEE Trans. on Evol. Comput. 2002. Vol. 6. P. 182-197. 8. Diaz-Manriquez, A., Toscano, G., Barron-Zambrano, J.H., Tello-Leal, E. A review of surrogate assisted multiobjective evolutionary algorithms // Comput. Intelligence and Neurosci. 2016. Vol. 2016. Article ID 9420460. 14 p. 9. Zitzler, E., Deb, K., Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results // Evolutionary Comput. 2000. Vol. 8, No. 2. P. 173-195. 10. Латыпов Ф.Ф., Никуличев Ю.В. Специализированный комплекс программ оптимизации. Новосибирск, 1985. 41 с. (Препр. / АН СССР. Сиб. отд-ние. ИТПМ; № 15). 11. Goldberg, D.E., Richardson, J.J. Genetic algorithms with sharing for multimodal function optimization // Proc. of the Second Intern. Conf. on Genetic Algorithms, Cambridge, MA, 1987. Hillsdale, New York: Lawrence Erlbaum Assoc., 1987. P. 41-49. 12. Deb, K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons, 2001. 497 p. 13. Launder, B.E., Spalding, D.B. The numerical computation of turbulent flows // Comput. Methods in Appl. Mech. and Eng. 1974. Vol. 3, iss. 2. P. 269-289. |