Цитирование: | 1. Andrews, M.J., O'Rourke, P.J., The multiphase Particle-in-Cell (MP-PIC) method for dense particulate flows. Int. J. Multiph. Flow. 22 (1996), 379–402.
2. Bai, X.N., Stone, J.M., Particle-gas dynamics with athena: Method and convergence. Astrophys. J. Suppl. 190 (2010), 297–310, 10.1088/0067-0049/190/2/297 arXiv:1005.4980.
3. Barrière-Fouchet, L., Gonzalez, J.F., Murray, J.R., Humble, R.J., Maddison, S.T., Dust distribution in protoplanetary disks. Vertical settling and radial migration. AAp 443 (2005), 185–194, 10.1051/0004-6361:20042249 arXiv:astro-ph/0508452.
4. Booth, R.A., Sijacki, D., Clarke, C.J., Smoothed particle hydrodynamics simulations of gas and dust mixtures. Mon. Not. R. Astron. Soc. 452 (2015), 3932–3947, 10.1093/mnras/stv1486 arXiv:1507.01007.
5. Cha, S.H., Nayakshin, S., A numerical simulation of a 'super-Earth’ core delivery from 100 to 8 au. Mon. Not. R. Astron. Soc. 415 (2011), 3319–3334, 10.1111/j.1365-2966.2011.18953.x arXiv:1010.1489.
6. Cha, S.H., Whitworth, A.P., Implementations and tests of Godunov-type particle hydrodynamics. Mon. Not. R. Astron. Soc. 340 (2003), 73–90, 10.1046/j.1365-8711.2003.06266.x.
7. Cuello, N., Gonzalez, J.F., Pignatale, F.C., Effects of photophoresis on the dust distribution in a 3D protoplanetary disc. Mon. Not. R. Astron. Soc. 458 (2016), 2140–2149, 10.1093/mnras/stw396 arXiv:1601.03662.
8. Dehnen, W., Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc. 425 (2012), 1068–1082, 10.1111/j.1365-2966.2012.21439.x arXiv:1204.2471.
9. Epstein, P.S., On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (1924), 710–733, 10.1103/PhysRev.23.710.
10. Fulk, D.A., Quinn, D.W., An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126 (1996), 165–180, 10.1006/jcph.1996.0128.
11. Gonzalez, J.F., Laibe, G., Maddison, S.T., Self-induced dust traps: overcoming planet formation barriers. Mon. Not. R. Astron. Soc. 467 (2017), 1984–1996, 10.1093/mnras/stx016 arXiv:1701.01115.
12. Haworth, T.J., Ilee, J.D., Forgan, D.H., Facchini, S., Price, D.J., Boneberg, D.M., Booth, R.A., Clarke, C.J., Gonzalez, J.F., Hutchison, M.A., Kamp, I., Laibe, G., Lyra, W., Meru, F., Mohanty, S., Panić, O., Rice, K., Suzuki, T., Teague, R., Walsh, C., Woitke, P., Community authors. Grand challenges in protoplanetary disc modelling. PASA, 33, 2016, e053, 10.1017/pasa.2016.45 arXiv:1608.01315.
13. Hubber, D.A., Rosotti, G.P., Booth, R.A., GANDALF - graphical astrophysics code for N-body dynamics and lagrangian fluids. Mon. Not. R. Astron. Soc. 473 (2018), 1603–1632, 10.1093/mnras/stx2405 arXiv:1709.04488.
14. Humphries, R.J., Nayakshin, S., Changes in the metallicity of gas giant planets due to pebble accretion. Mon. Not. R. Astron. Soc. 477 (2018), 593–615, 10.1093/mnras/sty569.
15. Hutchison, M., Price, D.J., Laibe, G., MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas. Mon. Not. R. Astron. Soc. 476 (2018), 2186–2198, 10.1093/mnras/sty367 arXiv:1802.03213.
16. Ishiki, S., Okamoto, T., Inoue, A.K., The effect of radiation pressure on dust distribution inside HII regions. Mon. Not. R. Astron. Soc. 474 (2018), 1935–1943, 10.1093/mnras/stx2833 ArXiv e-prints arXiv:1708.07137.
17. Laibe, G., Price, D.J., DUSTYBOX and DUSTYWAVE: two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures. Mon. Not. R. Astron. Soc. 418 (2011), 1491–1497, 10.1111/j.1365-2966.2011.19291.x arXiv:1106.1736.
18. Laibe, G., Price, D.J., Dusty gas with smoothed particle hydrodynamics - I. Algorithm and test suite. Mon. Not. R. Astron. Soc. 420 (2012), 2345–2364, 10.1111/j.1365-2966.2011.20202.x arXiv:1111.3090.
19. Laibe, G., Price, D.J., Dusty gas with smoothed particle hydrodynamics - II. Implicit timestepping and astrophysical drag regimes. Mon. Not. R. Astron. Soc. 420 (2012), 2365–2376, 10.1111/j.1365-2966.2011.20201.x arXiv:1111.3089.
20. Laibe, G., Price, D.J., Dust and gas mixtures with multiple grain species - a one-fluid approach. Mon. Not. R. Astron. Soc. 444 (2014), 1940–1956, 10.1093/mnras/stu1367 arXiv:1407.3569.
21. Lorén-Aguilar, P., Bate, M.R., Two-fluid dust and gas mixtures in smoothed particle hydrodynamics: a semi-implicit approach. Mon. Not. R. Astron. Soc. 443 (2014), 927–945, 10.1093/mnras/stu1173 arXiv:1406.3250.
22. Lorén-Aguilar, P., Bate, M.R., Two-fluid dust and gas mixtures in smoothed particle hydrodynamics II: an improved semi-implicit approach. Mon. Not. R. Astron. Soc. 454 (2015), 4114–4119, 10.1093/mnras/stv2262 arXiv:1509.08374.
23. Maddison, S.T., Humble, R.J., Murray, J.R., Building planets with dusty gas. Norris, R., Stootman, F., (eds.) Bioastronomy 2002: Life Among the Stars IAU Symposium, vol. 213, 2004, 231.
24. Marble, F.E., Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2:1 (1970), 397–446, 10.1146/annurev.fl.02.010170.002145.
25. Miniati, F., A hybrid scheme for gas-dust systems stiffly coupled via viscous drag. J. Comput. Phys. 229 (2010), 3916–3937, 10.1016/j.jcp.2010.01.034 arXiv:1001.4794.
26. Monaghan, J.J., Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992), 543–574, 10.1146/annurev.aa.30.090192.002551.
27. Monaghan, J.J., Implicit SPH drag and dusty gas dynamics. J. Comput. Phys. 138 (1997), 801–820, 10.1006/jcph.1997.5846.
28. Monaghan, J.J., Kocharyan, A., SPH simulation of multi-phase flow. Comput. Phys. Comm. 87 (1995), 225–235, 10.1016/0010-4655(94)00174-Z.
29. Morris, J.P., Fox, P.J., Zhu, Y., Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136 (1997), 214–226, 10.1006/jcph.1997.5776.
30. Nigmatullin, R.I., 1990. Dynamics of Multiphase Media, Volume 1.
31. Price, D.J., Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231 (2012), 759–794, 10.1016/j.jcp.2010.12.011 arXiv:1012.1885.
32. Price, D.J., Wurster, J., Nixon, C., Tricco, T.S., Toupin, S., Pettitt, A., Chan, C., Laibe, G., Glover, S., Dobbs, C., Nealon, R., Liptai, D., Worpel, H., Bonnerot, C., Dipierro, G., Ragusa, E., Federrath, C., Iaconi, R., Reichardt, T., Forgan, D., Hutchison, M., Constantino, T., Ayliffe, B., Mentiplay, D., Hirsh, K., Lodato, G., 2017. Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. PASA. arXiv:1702.03930.
33. Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A., Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355 (2004), 543–552, 10.1111/j.1365-2966.2004.08339.x arXiv:astro-ph/0408390.
34. Saito, T., Marumoto, M., Takayama, K., Numerical investigations of shock waves in gas-particle mixtures. Evaluation of numerical methods for dusty-gas shock wave phenomena. Shock Waves 13 (2003), 299–322, 10.1007/s00193-003-0217-y.
35. Snytnikov, V.N., Stoyanovskaya, O.P., Clump formation due to the gravitational instability of a multiphase medium in a massive protoplanetary disc. Mon. Not. R. Astron. Soc. 428 (2013), 2–12, 10.1093/mnras/sts002 arXiv:1210.0971.
36. Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978), 1–31, 10.1016/0021-9991(78)90023-2.
37. Springel, V., The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364 (2005), 1105–1134, 10.1111/j.1365-2966.2005.09655.x arXiv:astro-ph/0505010.
38. Stone, J.M., Norman, M.L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. ApJSS 80 (1992), 753–790, 10.1086/191680.
39. Stoyanovskaya, O.P., Snytnikov, N.V., Snytnikov, V.N., Modeling circumstellar disc fragmentation and episodic protostellar accretion with smoothed particle hydrodynamics in cell. Astron. Comput. 21 (2017), 1–14, 10.1016/j.ascom.2017.09.001 arXiv:1809.01310.
40. Stoyanovskaya, O.P., Snytnikov, V.N., Vorobyov, E.I., Analysis of methods for computing the trajectories of dust particles in a gas-dust circumstellar disk. Astron. Rep. 61 (2017), 1044–1060, 10.1134/S1063772917120071 arXiv:1809.01295.
41. Stoyanovskaya, O.P., Vorobyov, E.I., Snytnikov, V.N., Analysis of numerical algorithms for computing rapid momentum transfers between the gas and dust in simulations of circumstellar disks. Astron. Rep. 62 (2018), 455–468, 10.1134/s1063772918060069 arXiv:1808.02867.
42. Vorobyov, E.I., Akimkin, V., Stoyanovskaya, O., Pavlyuchenkov, Y., Liu, H.B., Early evolution of viscous and self-gravitating circumstellar disks with a dust component. AandAP, 614, 2018, A98, 10.1051/0004-6361/201731690 arXiv:1801.06898.
43. Vorobyov, E.I., Basu, S., The burst mode of protostellar accretion. ApJ 650 (2006), 956–969, 10.1086/507320 arXiv:astro-ph/0607118.
44. Weidenschilling, S.J., Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180 (1977), 57–70, 10.1093/mnras/180.1.57.
45. Williams, J.P., Best, W.M.J., A parametric modeling approach to measuring the gas masses of circumstellar disks. ApJ, 788, 2014, 59, 10.1088/0004-637X/788/1/59 arXiv:1312.0151.
46. Xiong, Q., Deng, L., Wang, W., Ge, W., Sph method for two-fluid modeling of particlefluid fluidization. Chem. Eng. Sci. 66 (2011), 1859–1865.
47. Yang, C.C., Johansen, A., Integration of particle-gas systems with stiff mutual drag interaction. Astrophys. J. Suppl., 224, 2016, 39, 10.3847/0067-0049/224/2/39 arXiv:1603.08523.
48. Zhu, Z., Nelson, R.P., Dong, R., Espaillat, C., Hartmann, L., Dust filtration by planet-induced gap edges: Implications for transitional disks. ApJ, 755, 2012, 6, 10.1088/0004-637X/755/1/6 arXiv:1205.5042.
|