Инд. авторы: Berendeev E., Efimova A., Vshivkov V., Dudnikova G.
Заглавие: A simple absorbing layer for em-radiation from a beam-plasma interaction system
Библ. ссылка: Berendeev E., Efimova A., Vshivkov V., Dudnikova G. A simple absorbing layer for em-radiation from a beam-plasma interaction system // Mathematical Methods in the Applied Sciences. - 2018. - Vol.41. - Iss. 18. - P.9276-9282. - ISSN 0170-4214. - EISSN 1099-1476.
Внешние системы: DOI: 10.1002/mma.5253; РИНЦ: 38608381; РИНЦ: 41784668; SCOPUS: 2-s2.0-85053697752; WoS: 000452611500066;
Реферат: eng: In this paper, a problem of taking into account the electromagnetic radiation power in a numerical simulation of electron beam-plasma interaction is considered. The numerical model is based on the particle-in-cell (PIC) method and the finite-difference time-domain (FDTD) scheme for solving Maxwell equations. As a boundary condition, it is proposed to use a simple layer of absorption, that is, artificial attenuation of an electromagnetic wave by multiplying the electromagnetic field in the boundary domain by a coefficient k < 1 depending on the distance to the boundary. The numerical experiments performed show that using such a layer for absorbing the electromagnetic radiation and for taking into account its power is efficient.
Ключевые слова: Maxwell equations; PIC-method; plasma physics; Electromagnetic fields; Electromagnetic wave emission; Electromagnetic waves; Finite difference time domain method; Maxwell equations; Numerical methods; Numerical models; Time domain analysis; A-coefficient; Absorbing layers; Boundary domains; EM radiation; Numerical experiments; Particle in cell method; PIC method; Plasma physics; Beam plasma interactions; absorption conditions; electromagnetic radiation;
Издано: 2018
Физ. характеристика: с.9276-9282
Цитирование: 1. Taflove A. Computational Electrodynamics The Finite-Difference Time-Domain Method. Boston: London: Artech House Publishers; 1995. 2. Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat. 1981;23(4):377-382. 3. Liao ZP, Wong HL, Yang BP, Yuan YF. A transmitting boundary for transient wave analysis. Sci Sin A. 1984;27:1063-1076. 4. Berenger J. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1994;114(2):185-200. 5. Gedney SD. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans Antennas Propag. 1996;44(12):1630-1639. 6. Berendeev EA, Dudnikova GI, Efimova AA. PIC-simulation of the electron beam interaction with modulated density plasma. AIP Conference Proceedings. 2017;1895:120002. 7. Berendeev E, Boronina M, Dudnikova G, Efimova A, Vshivkov V. Supercomputer Modeling of Generation of Electromagnetic Radiation by Beam-Plasma Interaction. In: Sokolinsky L, Zymbler M, eds. Parallel Computational Technologies PCT Communications in Computer and Information Science, Vol. 753. Cham: Springer; 2017:247-260. 8. Postupaev VV, Burdakov AV, Ivanov IA, et al. Temporal structure of double plasma frequency emission of thin beam-heated plasma. Phys. Plasmas. 2013;20:092304. 9. Arzhannikov AV, Burdakov AV, Burmasov VS, Ivanov IA. Dynamics and spectral composition of subterahertz emission from plasma column due to two-stream instability of strong relativistic electron beam. IEEE Trans Terahertz Sci Technol. 2016;6:245-252. 10. Timofeev IV, Annenkov VV, Arzhannikov AV. Regimes of enhanced electromagnetic emission in beam-plasma interactions. Phys Plasmas. 2015;22:113109. 11. Annenkov VV, Timofeev IV, Volchok EP. Theory of a beam-driven plasma antenna. Phys Plasmas. 2016;23:053101. 12. Hockney RW, Eastwood JW. Computer Simulation Using Particles. Boca Raton, Florida USA: CRC Press; 1988. 13. Boris JP. Relativistic plasma simulation-optimization of a hybrid code. In: Fourth Conference on nu-merical Simulation of Plasmas; 1970; Washington:3-67.