Инд. авторы: Yelisseyev A.P., Afanasyev V.P, Gromilov S.A.
Заглавие: Yakutites from the Popigai meteorite crater
Библ. ссылка: Yelisseyev A.P., Afanasyev V.P, Gromilov S.A. Yakutites from the Popigai meteorite crater // Diamond and Related Materials. - 2018. - Vol.89. - P.10-17.
Внешние системы: DOI: 10.1016/j.diamond.2018.08.003; РИНЦ: 35760644; SCOPUS: 2-s2.0-85050959375; WoS: 000449240000002;
Реферат: eng: For the first time, 60 large diamond aggregates were found inside the Popigai meteorite crater during washing of alluvial deposits along the Dogoi river crossing the crater. These aggregates are similar in appearance to yakutites from the placers of Northern Yakutia (YPY), and we regard them as yakutites from the Popigai crater (YPC). The structure and optical properties of Popigai impact diamonds from the impact melt rocks (tagamites) in the crater (PIDT) and yakutites YPC/YPY were compared in detail. In all these cases, a polycrystalline structure consisting of nanoscale grains of cubic and twinned cubic diamond (lonsdaleite) was found. This is the result of a solid-phase graphite-diamond transition due to an impact event 35 million years ago. The diamond aggregates show the following features: a red shift of the short-wave edge of the transmission, broadening of the diamond Raman peaks, signals from other diamond polytypes and numerous inclusions of other minerals in the Raman spectra, and a dominant broadband photoluminescence (PL). PL in the N3 system associated with N3V centers in PIDT diamonds indicates a high-temperature annealing of these aggregates with resulting aggregation of impurities during the prolonged cooling of large impact melt pockets and pools. It is assumed that some of the impact diamonds were ejected from the crater during the impact event and experienced rapid cooling. Some of these diamonds fell back into the crater (YPC yakutites), others have been deposited outside the crater and displaced during erosion (YPY yakutites). Difference in size and shape between the PIDTs and yakutites YPC/YPY is due to the difference in size of original graphite flakes or aggregates and/or due to the fundamentally different technologies of diamond extraction.
Ключевые слова: RAMAN; LONSDALEITE; IMPACT DIAMONDS; OPTICAL-PROPERTIES; CUBIC DIAMOND; X-RAY-DIFFRACTION; Tagamite; Superhard materials; Impurities; Defects; Optical properties characterization; Optical emission; Impact diamond; Nanocrystalline diamond; Yakutite; PROGRAM;
Издано: 2018
Физ. характеристика: с.10-17
Цитирование: 1. Orlov, Yu.L., The Mineralogy of Diamond. 1977, Wiley, Masalai Press, Oakland. 2. Frondel, C., Marvin, U.B., Lonsdaleite, a new hexagonal polymorph of diamond. Nature 214:5088 (1967), 587–589. 3. Valter, A.A., Eryomenko, G.K., Kvasnitsa, V.N., Polkanov, Yu.A., Shock-metamorphic Minerals of Carbon. 1992, Naukova Dumka, Kiev (in Russian). 4. Bokii, G.B., Bezrukov, G.N., Klyuev, Yu.A., Naletov, A.M., Nepsha, V.I., Natural and Synthetic Diamonds. 1986, Nauka, Moscow (in Russian). 5. Sokhor, M.I., Futergendler, S.I., Cubic diamond-lonsdaleite aggregates: an X-ray study. Kristallografiya N4 (1974), 759–762 (in Russian). 6. Ohfuji, H., Irifune, T., Litasov, K., Yamashita, T., Isobe, F., Afanasiev, V., Pokhilenko, N., Natural occurrence of pure nanopolycrystaline diamond from impact crater. Sci. Rep., 2015, 14702. 7. Nemeth, P., Garvie, L.A.J., Aoki, T., Dubrovinskaia, N., Dubrovinsky, L., Buseck, P.R., Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun., 5, 2014, 5447, 10.1038/ncomms6447. 8. Nemeth, P., Garvie, L.A.J., Buseck, P.R., Twinning of cubic diamond explains reported nanodiamond polymorphs. Sci. Rep., 5, 2015, 18381, 10.1038/srep18381. 9. Masaitis, V.L., Futergendler, S.I., Gnevushev, M.A., Diamonds in impactites of the Popigai meteorite crater. Proceedings of the All-Union Mineralogical Society, 1, 1972, 108–112 (in Russian). 10. Vishnevsky, S.A., Afanasiev, V.P., Argunov, K.P., Palchik, N.A., Impact Diamonds: Features, Origin and Significance. 1997, SB RAS Publishers, Novosibirsk (in Russian). 11. Masaitis, V.L., Popigai crater: origin and distribution of diamond-bearing impactites. Meteorit. Planet. Sci. 33 (1998), 349–359. 12. Chumak, M.A., Bartoshinsky, Z.V., Yakutite: a new variety of diamond. Geolog Yakutii, N27(556), 1968, 1 (in Russian). 13. Yelisseyev, A.P., Afanasiev, V.P., Panchenko, A.V., Gromilov, S.A., Kaichev, V.V., Saraev, А.А., Yakutites: are they impact diamonds from the Popigai crater?. Lithos 265 (2016), 278–291. 14. Panchenko, A.V., Tolstikh, N.D., Gromilov, S.A., Method of XRD analysis of crystal aggregates. J. Struct. Chem. 55:Supplement 1 (2014), S24–S29. 15. Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., Litasov, K., Luminescence of natural carbon nanomaterials - impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 58 (2015), 69–77. 16. Rodriguez-Navarro, A., XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Crystallogr. 39 (2006), 905–909. 17. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Häusermann, D., Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14 (1996), 235–248, 10.1080/08957959608201408. 18. Prescher, C., Prakapenka, V.B., DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 35:3 (2015), 223–230, 10.1080/08957959.2015.1059835. 19. Powder Diffraction File, Powder Diffraction File, 2010. PDF-2/Release 2010. 2015, International Centre for Diffraction Data, USA. 20. Kraus, W., Nolze, G., POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29 (1996), 301–303. 21. Reshetnyak, N.B., Ezersky, V.A., Raman scattering in natural diamonds. Mineral. J. 12 (1990), 3–9 (in Russian). 22. Yelisseyev, A., Meng, G.S., Afanasyev, V., Pokhilenko, N., Pustovarov, V., Isakova, A., Lin, Z.S., Lin, H.Q., Optical properties of impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 37 (2013), 8–16. 23. Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanasiev, V.P., Pokhilenko, N.P., Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45 (2014), 305–313. 24. Denisov, V.N., Mavrin, B.N., Serebryanaya, N.R., Dubitsky, G.A., Aksenenkov, V.V., Kirichenko, A.N., Kuzmin, N.V., Kulnitskiy, B.A., Perezhogin, I.A., Blank, V.D., First-principles, UV Raman, X-ray diffraction and TEM study of the structure and lattice dynamics of the diamond–lonsdaleite system. Diam. Relat. Mater. 20 (2011), 951–953. 25. Ugapyeva, S.S., Zayakina, N.V., Pavlushin, A.D., Oleinikov, O.B., The results of comprehensive mineralogical studies of placer yakutites from the Anabar diamond province. Otechestvennaya Geologiya, 5, 2010 (in Russian). 26. Nasdala, V.L., Smith, D.C., Kaindl, R., Zieman, M.A., Spectroscopic methods in mineralogy. Beran, A., Libowitzky, (eds.) Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. EMU Notes in Mineralogy, 6, 2004, Eotvos University Press, 281–343. 27. Schwan, J., Ulrich, S., Batori, V., Rhrhardt, H., Silva, S.R.P., Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80:N1 (1996), 440–447. 28. Tuinstra, F., Koening, J.L., Raman spectrum of graphite. J. Chem. Phys. 53 (1970), 1126–1130. 29. Laetsch, T., Downs, R.T., Software For Identification and Refinement of Cell Parameters From Powder Diffraction Data of Minerals Using the RRUFF Project and American Mineralogist Crystal Structure Databases. Abstracts From the 19th General Meeting of the International Mineralogical Association, Kobe, Japan. July 23–28, 2006. 30. Zaitsev, A.M., Optical Properties of Diamonds. A Data Handbook. 2001, Springer-Verlag, Berlin. 31. Iakubovskii, K., Adriaenssens, G.J., Optical characterization of natural Argyle diamonds. Diam. Relat. Mater. 11 (2002), 125–131. 32. Collins, A., Connor, A., Cheng-Han, L., Shareef, L., Spear, P.M., Annealing of nitrogen centers in type Ia diamond. J. Appl. Phys., 97, 2005 (083517-1-083517-10). 33. Chung, P.H., Perevedentseva, E., Cheng, C.-L., The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601 (2007), 3866–3870. 34. Aleksenski, A.E., Osipov, V.Yu., Vul', A. Ya, Ber, B.Ya., Smirnov, A.B., Melekhin, V.G., Adriaenssens, G.J., Iakoubovskii, K., Optical properties of nanodiamond layers. Phys. Solid State 43:1 (2001), 145–150.