Инд. авторы: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Kruk A.N., Sokol I.A, Palyanov Y.N.
Заглавие: Fate of fluids at the base of subcratonic lithosphere: Experimental constraints at 5.5–7.8 GPa and 1150–1350 deg C
Библ. ссылка: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Kruk A.N., Sokol I.A, Palyanov Y.N. Fate of fluids at the base of subcratonic lithosphere: Experimental constraints at 5.5–7.8 GPa and 1150–1350 deg C // Lithos. - 2018. - Vol.318-319. - P.419-433.
Внешние системы: DOI: 10.1016/j.lithos.2018.08.025; РИНЦ: 35722318; SCOPUS: 2-s2.0-85052967195;
Реферат: eng: Phase relations in the lherzolite-C-O-H-N system are studied experimentally at 5.5–7.8 GPa, 1150–1350 deg C, andoxygen fugacity (fO2) from 2.5 log units below to 3.5 log units above the iron-wüstite (IW) equilibrium, in 10- to 150-h runs. The two-capsule technique is applied to maintain hydrogen fugacity (fH2) at the IW (Fe-FeO), MMO (Mo-MoO2), and HM (Fe2O3-Fe3O4) equilibria. The mineral assemblage stable in the Fe0- and graphite-saturatedlherzolite-C-O-H-N system, at 6.3–7.8 GPa and 1200–1350 deg C, consists of olivine, orthopyroxene, clinopyroxene, and garnet. The metal phase occurs either as iron carbide (Fe3C) or iron nitride (Fe3N) at low and high concentrations of nitrogen, respectively. Carbide and nitride phases contain progressively more Ni (5–6 to 25 wt.%) as fluids become more hydrous. Fluids equilibrated with lherzolite consist of CH4 and C2H6, minor amounts of other alkanes, H2O, NH3, and methaneimine (CH3N). Fluids with high nitrogen contents are mainly composed of NH3, N2, light alkanes, and water. As fO2 increases, Fe3C and Fe3N oxidize and silicate phases (olivine, orthopyroxene, and garnet) contain more FeO, while fluids become richer in H2O and more depleted in hydrocarbons (HCs). Fluids synthesized at lithospheric P = 5.5–6.3 GPa, T = 1150–1200 deg C and fO2 near the carbon-saturated water maximum (CW) contain up to 85 rel.% H2O and at least 14 rel.% of total HCs. The presence of HCs stable to oxidation suppresses water activity in fluids while the solidus of the lherzolite-C-O-H-N system at fO2 near CW becomes at least 150 deg C higher than that of the carbon-freelherzolite-H2O system. Further oxidation of HCs and C0 leads to partial carbonation of olivine and orthopyroxene and their replacement by magnesite and clinopyroxene. The total content of HCs (mainly C2-C13 alkanes and oxygenated HCs) in fluids from magnesite-bearing lherzolite at 5.5 GPa and 1200 deg C is never below 9 rel.% even in 150-h runs, while CO2 does not exceed 3–5 rel.%. Melt inclusions composed of Mg and Ca carbonates in olivine record the first batches of carbonate melt at these P-T and redox conditions. The solidus of the lherzolite-C-O-H-N system at 5.5–7.8 GPa with fO2 between metal and carbonate saturation is above the typical upper mantle temperatures at a heat flux of 40 mW/m2. Thus, the experiments demonstrate that HC-H2O fluids can ascend from metal-saturated asthenosphere to more oxidized lithospheric mantle in a typical thermal regime and supply volatiles for carbonatite metasomatism and generation of carbonate-silicate melts.
Издано: 2018
Физ. характеристика: с.419-433
Цитирование: 1. Boettcher, A.L., Mysen, B.., Allen, J.C., Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-mediahigh-pressure apparatus. J. Geophys. Res. 78:26 (1973), 5898–5901. 2. Cartigny, P., Harris, J.W., Javoy, M., Diamond genesis, mantle fractionations and mantle nitrogen content: A study of 13C-N concentrations in diamonds. Earth Planet. Sci. Lett. 185:1–2 (2001), 85–98. 3. Day, H.W., A revised diamond-graphite transition curve. Am. Mineral. 97:1 (2012), 52–62. 4. Doucet, L.S., Ionov, D.A., Golovin, A.V., The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165:6 (2013), 1225–1242. 5. Dvir, O., Kessel, R., The effect of CO2 on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa. Geochim. Cosmochim. Acta 206 (2017), 184–200. 6. Foley, S., A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52 (2011), 1363–1391. 7. Foustoukos, D.I., Seyfried, W.E., Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304 (2004), 1002–1005. 8. Goncharov, A.G., Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite. Siberia. Earth Planet. Sci. Lett. 357 (2012), 99–110. 9. Green, D.H., Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle. Phys. Chem. Miner. 42:2 (2015), 95–122. 10. Green, D.H., Hibberson, W.O., Kovács, I., Rosenthal, A., Water and its influence on the lithosphere–asthenosphere boundary. Nature, 467(7314), 2010, 448. 11. Green, D.H., Hibberson, W.O., Rosenthal, A., Kovács, I., Yaxley, G.M., Falloon, T.J., Brink, F., Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol. 55 (2014), 2067–2096. 12. Griffin, W.L., Huang, J.X., Thomassot, E., Gain, S.E., Toledo, V., O'Reilly, S.Y., Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineral. Petrol., 2018, 1–14, 10.1007/s00710-018-0575-x. 13. Grove, T.L., Chatterjee, N., Parman, S.W., Medard, E., The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249 (2006), 74–89. 14. Guillermet, A.F., Frisk, K., Thermodynamic properties of Ni nitrides and phase stability in the Ni-N system. Int. J. Thermophys. 12 (1991), 417–431. 15. Hasterok, D., Chapman, D.S., Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 307 (2011), 59–70. 16. Horita, J., Berndt, M.E., Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285 (1999), 1055–1057. 17. Huizenga, J.M., Crossingham, A., Viljoen, F., Diamond precipitation from ascending reduced fluids in the Kaapvaal lithosphere: thermodynamic constraints. Compt. Rendus Geosci. 344:2 (2012), 67–76. 18. Jacob, D.E., Kronz, A., Viljoen, K.S., Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146 (2004), 566–576. 19. Kaminsky, F.V., Wirth, R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canad. Mineral. 49 (2011), 555–572. 20. Kaminsky, F., Wirth, R., Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth's “lost” nitrogen. Am. Mineral. 102:8 (2017), 1667–1676. 21. Keppler, H., Water solubility in carbonatite melts. Am. Mineral. 88:11−12 (2003), 1822–1824. 22. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., Thompson, A.B., The water–basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 C. Earth Planet. Sci. Lett. 237:3–4 (2005), 873–892. 23. Kolesnikov, A.Y., Saul, J.M., Kutcherov, V.G., Chemistry of hydrocarbons under extreme thermobaric conditions. ChemistrySelect 2 (2017), 1336–1352. 24. Kovács, I., Green, D.H., Rosenthal, A., Hermann, J., O'Neill, H.S.C., Hibberson, W.O., Udvardi, B., An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J. Petrol. 53:10 (2012), 2067–2093. 25. Li, Y., Keppler, H., Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 129 (2014), 13–32. 26. Li, Y., Wiedenbeck, M., Shcheka, S., Keppler, H., Nitrogen solubility in upper mantle minerals. Earth Planet. Sci. Lett. 377 (2013), 311–323. 27. Litasov, K.D., Shatskiy, A., Ohtani, E., Melting and subsolidus phase relations in peridotite and eclogite systems with reduced C-O-H fluid at 3–16 GPa. Earth Planet. Sci. Lett. 391 (2014), 87–99. 28. Lobanov, S.S., Chen, P.N., Chen, X.J., Zha, C.S., Litasov, K.D., Mao, H.K., Goncharov, A.F., Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun., 4, 2013. 29. Lord, O.T., Walter, M.J., Dasgupta, R., Walker, D., Clark, S.M., Melting in the Fe-C system to 70 GPa. Earth Planet. Sci. Lett. 284 (2009), 157–167. 30. Luth, R.W., Volatiles in Earth's mantle. Treatise on Geochemistry 3.9, 2014, Elsevier, Oxford, 355–391. 31. Matveev, S., Ballhaus, C., Fricke, K., Truckenbrodt, J., Ziegenben, D., Volatiles in the Earth's mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 61:15 (1997), 3081–3088. 32. Mikhail, S., Sverjensky, D.A., Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere. Nat. Geosci. 7 (2014), 816–819. 33. Palyanov, Y.N., Sokol, A.G., The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 112 (2009), 690–700. 34. Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10 (2010), 3169–3175. 35. Palyanov, Y.N., Borzdov, Y.M., Kupriyanov, I.N., Khokhryakov, A.F., Effect of H2O on diamond crystal growth in metal–carbon systems. Cryst. Growth Des. 12:11 (2012), 5571–5578. 36. Palyanov, Yu.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., Sobolev, N.V., Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 20408–20413. 37. Rohrbach, A., Schmidt, M.W., Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature, 472, 2011, 209. 38. Rohrbach, A., Ghosh, S., Schmidt, M.W., Wijbrans, C.H., Klemme, S., The stability of Fe–Ni carbides in the Earth's mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 388 (2014), 211–221. 39. Shcheka, S.S., Wiedenbeck, M., Frost, D.J., Keppler, H., Carbon solubility in mantle minerals. Earth Planet. Sci. Lett. 245:3–4 (2006), 730–742. 40. Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Walter, M.J., Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75 (2013), 355–421. 41. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., Wang, W., Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354 (2016), 1403–1405. 42. Sobolev, N.V., Lavrentev, Yu.G., Pospelova, L.N., Sobolev, E.V., Chrome pyropes from Yakutian diamonds. Dokl. Akad. Nauk SSSR 189 (1969), 162–165 (in Russian). 43. Sobolev, N.V., Efimova, E.S., Pospelova, L.N., Native iron in Yakutian diamonds and its mineral assemblage. Sov. Geol. Geophys. 22 (1981), 25–28. 44. Sokol, A.G., Pal'yanov, Y.N., Diamond formation in the system MgO–SiO2–H2O–C at 7.5 GPa and 1600 deg C. Contrib. Mineral. Petrol. 155:1 (2008), 33–43. 45. Sokol, A.G., Palyanova, G.A., Palyanov, Yu.N., Tomilenko, A.A., Melenevsky, V.N., Fluid regime and diamond formation in the reduced mantle: experimental constraints. Geochim. Cosmochim. Acta 73 (2009), 5820–5834. 46. Sokol, A.G., Palyanov, Y.N., Kupriyanov, I.N., Litasov, K.D., Polovinka, M.P., Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems. Geochim. Cosmochim. Acta 74:16 (2010), 4793–4806. 47. Sokol, A.G., Borzdov, Yu.M., Palyanov, Yu.N., Khokhryakov, A.F., High-temperature calibration of a multi-anvilhigh-pressure apparatus. High Pressure Res. 35 (2015), 139–147. 48. Sokol, A.G., Khokhryakov, A.F., Palyanov, Y.N., Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments. Contrib. Mineral. Petrol., 170(3), 2015, 26. 49. Sokol, A.G., Palyanov, Y.N., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., Carbon and nitrogen speciation in nitrogen-richC–O–H–N fluids at 5.5–7.8 GPa. Earth Planet. Sci. Lett. 460 (2017), 234–243. 50. Sokol, A.G., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., Sokol, I.A., Palyanov, Y.N. 2017b. Carbon and Nitrogen Speciation in N-poorC-O-H-N Fluids at 6.3 GPa and 1100–1400 deg C. Sci. Rep.7, 706. DOI: https://doi.org/10.1038/s41598-017-00679-7. 51. Sokol, A.G., Kruk, A.N., Seryotkin, Y.V., Korablin, A.A., Palyanov, Y.N., Phase relations in the Fe-Fe3C-Fe3N system at 7.8 GPa and 1350 deg C: Implications for carbon and nitrogen hosts in Fe0-saturated upper mantle. Phys. Earth Planet. Inter. 265 (2017), 43–53. 52. Sokol, A.G., Tomilenko, A.A., Bul'bak, T.A., Kruk, A.N., Zaikin, P.A., Sokol, I.A., Palyanov, Y.N., The Fe–C–O–H–N system at 6.3–7.8 GPa and 1200–1400 deg C: implications for deep carbon and nitrogen cycles. Contrib. Mineral. Petrol., 173(6), 2018, 47. 53. Stachel, T., Luth, R.W., Diamond formation—where, when and how?. Lithos 220 (2015), 200–220. 54. Stachel, T., Harris, J.W., Brey, G.P., Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 132 (1998), 34–47. 55. Stagno, V., Ojwang, D.O., McCammon, C.A., Frost, D.J., The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature, 493, 2013, 84. 56. Stalder, R., Ulmer, P., Thompson, A., Günther, D., High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib. Mineral. Petrol. 140:5 (2001), 607–618. 57. Sverjensky, D.A., Stagno, V., Huang, F., Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci., 7, 2014, 909. 58. Taylor, W.R., Green, D.H., Measurement of reduced peridotite-COH solidus and implications for redox melting of the mantle. Nature 332 (1988), 349–352. 59. Thomassot, E., Cartigny, P., Harris, J.W., Viljoen (Fanus), K.S., Methane-related diamond crystallization in the Earth's mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet. Sci. Lett. 257 (2007), 362–371. 60. Tiraboschi, C., Tumiati, S., Sverjensky, D., Pettke, T., Ulmer, P., Poli, S., Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-bufferedhigh-pressureCOH fluids in equilibrium with forsterite+ enstatite and magnesite+ enstatite. Contrib. Mineral. Petrol., 173(1), 2018, 2. 61. Wallace, M.E., Green, D.H., An experimental determination of primary carbonatite magma composition. Nature, 335(6188), 1988, 343. 62. Yang, X., Keppler, H., Li, Y., Molecular hydrogen in mantle minerals. Geochem. Perspect Lett. 2 (2016), 160–168. 63. Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., An oxygen fugacity profile through the Siberian Craton— Fe K-edgeXANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140 (2012), 142–151. 64. Zhang, C., Duan, Z., A model for C–O–H fluid in the Earth's mantle. Geochim. Cosmochim. Acta 73:7 (2009), 2089–2102.