Инд. авторы: Palyanov Y.N., Kupriyanov I.N., Borzdov Y.M., Nechaev D.V.
Заглавие: Effect of the solvent-catalyst composition on diamond crystallization in the Mg-Ge-C system
Библ. ссылка: Palyanov Y.N., Kupriyanov I.N., Borzdov Y.M., Nechaev D.V. Effect of the solvent-catalyst composition on diamond crystallization in the Mg-Ge-C system // Diamond and Related Materials. - 2018. - Vol.89. - P.1-9.
Внешние системы: DOI: 10.1016/j.diamond.2018.08.002; РИНЦ: 35754049; SCOPUS: 2-s2.0-85050976859; WoS: 000449240000001;
Реферат: eng: Crystallization of diamond in the Mg-Ge-C system has been studied at 7.5 GPa and 1800 degrees C with the catalyst composition ranging from pure Mg to pure Ge. It is found that with increasing Ge content of the solvent-catalyst, the degree of graphite-to-diamond conversion gradually decreases from 92 to 16%, which is a consequence of the low solubility of carbon in the germanium melt. A decrease in the Mg/Ge ratio leads to a change in the diamond growth form from cube to octahedron and a drastic increase in the number of diamond nucleation centers. The spectral properties of the crystallized diamonds are studied by photoluminescence techniques. The correlations between the Ge content of the Mg-Ge-C system and the luminescence characteristics of the diamond crystals caused by the germanium-vacancy, silicon-vacancy, and nitrogen-vacancy optical centers are established. The results obtained in this study demonstrate that by changing the catalyst composition in the Mg-Ge-C system, it is possible to control the design of the diamond crystals and synthesize isometric, pyramidal, prismatic or needle-like crystals containing Ge-V centers.
Ключевые слова: CENTERS; DEFECTS; MORPHOLOGY; HIGH-PRESSURE; VACANCY COLOR-CENTER; Impurities; Defect characterization; Solvent-catalysts; High pressure high temperature (HPHT); Synthetic diamond; Optical properties; SPINS;
Издано: 2018
Физ. характеристика: с.1-9
Цитирование: 1. Prawer, S., Aharonovich, I., (eds.) Quantum Information Processing With Diamond, 2014, Woodhead Publishing (330 pp.). 2. Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D., Quantum computing with defects. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 8513–8518. 3. Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Gurudev Dutt, M.V., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455 (2008), 644–647. 4. Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J., Electric-field sensing using single diamond spins. Nat. Phys. 7 (2011), 459–463. 5. Barnard, A.S., Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134 (2009), 1751–1764. 6. Mohan, N., Chen, C.S., Hsieh, H.H., Wu, Y.C., Chang, H.C., In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 10 (2010), 3692–3699. 7. Santori, C., Barclay, P.E., Fu, K.M., Beausoleil, R.G., Spillane, S., Fisch, M., Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology, 21, 2010, 274008. 8. Chu, Y., Lukin, M.D., Quantum optics with nitrogen-vacancy centres in diamond. Fabre, C., Sandoghdar, V., Treps, N., Cugliandolo, L.F., (eds.) Quantum Optics and Nanophotonics, 2017, Oxford University Press, Oxford, UK, 229–270. 9. Wrachtrup, J., Jelezko, F., Processing quantum information in diamond. J. Phys. Condens. Matter 18 (2006), S807–S824. 10. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., Wrachtrup, J., Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6 (2010), 249–253. 11. Orwa, J.O., Greentree, A.D., Aharonovich, I., Alves, A.D.C., Van Donkelaar, J., Stacey, A., Prawer, S., Fabrication of single optical centres in diamond - a review. J. Lumin. 130 (2010), 1646–1654. 12. Pezzagna, S., Rogalla, D., Wildanger, D., Meijer, J., Zaitsev, A., Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks. New J. Phys., 13, 2011, 035024. 13. Aharonovich, I., Castelletto, S., Johnson, B.C., McCallum, J.C., Prawer, S., Engineering chromium-related single photon emitters in single crystal diamonds. New J. Phys., 13, 2011, 045015. 14. Rabeau, J.R., Chin, Y.L., Prawer, S., Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett., 86, 2005, 131926. 15. Goss, J.P., Briddon, P.R., Rayson, M.J., Sque, S.J., Jones, R., Vacancy-impurity complexes and limitations for implantation doping of diamond. Phys. Rev. B, 72, 2005, 035214. 16. Hepp, C., Müller, T., Waselowski, V., Becker, J.N., Pingault, B., Sternschulte, H., Steinmüller-Nethl, D., Gali, A., Maze, J.R., Atatüre, M., Becher, C., Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett., 112, 2014, 036405. 17. Iwasaki, T., Ishibashi, F., Miyamoto, Y., Doi, Y., Kobayashi, S., Miyazaki, T., Tahara, K., Jahnke, K.D., Rogers, L.J., Naydenov, B., Jelezko, F., Yamasaki, S., Nagamachi, S., Inubushi, T., Mizuochi, N., Hatano, M., Germanium-vacancy single color centers in diamond. Sci. Rep., 5, 2015, 12882. 18. Iwasaki, T., Miyamoto, Y., Taniguchi, T., Siyushev, P., Metsch, M.H., Jelezko, F., Hatano, M., Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett., 119, 2017, 253601. 19. Rogers, L.J., Jahnke, K.D., Teraji, T., Marseglia, L., Muller, C., Naydenov, B., Schauffert, H., Kranz, C., Isoya, J., McGuinness, L.P., Jelezko, F., Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun., 5, 2014, 4739. 20. Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., Jelezko, F., Lončar, M., Lukin, M.D., Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett., 118, 2017, 223603. 21. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Surovtsev, N.V., Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep., 5, 2015, 14789. 22. Ekimov, E.A., Lyapin, S.G., Boldyrev, K.N., Kondrin, M.V., Khmelnitskiy, R., Gavva, V.A., Kotereva, T.V., Popova, M.N., Germanium–vacancy color center in isotopically enriched diamonds synthesized at high pressures. JETP Lett. 102 (2015), 811–816. 23. Ralchenko, V.G., Sedov, V.S., Khomich, A.A., Krivobok, V.S., Nikolaev, S.N., Savin, S.S., Vlasov, I.I., Konov, V.I., Observation of the Ge-vacancy color center in microcrystalline diamond films. Bull. Lebedev Phys. Inst., 42, 2015, 165. 24. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Khokhryakov, A.F., Surovtsev, N.V., High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 16 (2016), 3510–3518. 25. Siyushev, P., Metsch, M.H., Ijaz, A., Binder, J.M., Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Nguyen, C.T., Lukin, M.D., Hemmer, P.R., Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Rogers, L.J., Jelezko, F., Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B, 96, 2017, 081201(R). 26. Nadolinny, V., Komarovskikh, A., Palyanov, Y., Kupriyanov, I., Borzdov, Y., Rakhmanova, M., Yuryeva, O., Veber, S., EPR study of Si- and Ge-related defects in HPHT diamonds synthesized from Mg-based solvent-catalysts. Phys. Status Solidi A 213 (2016), 2623–2628. 27. Komarovskikh, A., Nadolinny, V., Plyusnin, V., Palyanov, Y., Rakhmanova, M., Photoluminescence of HPHT diamonds synthesized in the Mg-Ge-C system. Diam. Relat. Mater. 79 (2017), 145–149. 28. Fan, J.-W., Cojocaru, I., Becker, J., Fedotov, I.V., Alkahtani, M.H.A., Alajlan, A., Blakley, S., Rezaee, M., Lyamkina, A., Palyanov, Y.N., Borzdov, Y.M., Yang, Y.-P., Zheltikov, A., Hemmer, P., Akimov, A.V., Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics 5 (2018), 765–770. 29. Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., Borzdov, Y.M., High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 19 (2017), 4459–4475. 30. Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F., Fluid-bearing alkaline-carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos 60 (2002), 145–159. 31. Sokol, A.G., Borzdov, Y.M., Palyanov, Y.N., Khokhryakov, A.F., High temperature calibration a multi-anvil high-pressure apparatus. High Pressure Res. 35 (2015), 139–147. 32. Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., Ralchenko, V.G., Crystal growth of diamond. Nishinaga, T., Rudolph, P., (eds.) Handbook of Crystal Growth, 2nd edn., vol. 2a, ch. 17, 2015, Elsevier, Amsterdam, 671–713. 33. Palyanov, Y.N., Borzdov, Y.M., Kupriyanov, I.N., Khokhryakov, A.F., Nechaev, D.V., Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 17 (2015), 4928–4936. 34. Palyanov, Y.N., Khokhryakov, A.F., Borzdov, Y.M., Kupriyanov, I.N., Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 13 (2013), 5411–5419. 35. Khokhryakov, A.F., Sokol, A.G., Borzdov, Y.M., Palyanov, Y.N., Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. J. Cryst. Growth 426 (2015), 276–282. 36. Yelisseyev, A., Kanda, H., Optical centers related to 3d transition metals in diamond. New Diamond Front. Carbon Technol. 17 (2007), 127–178. 37. Scace, R.I., Slack, G.A., Solubility of carbon in silicon and germanium. J. Chem. Phys. 30 (1959), 1551–1555. 38. Palyanov, Y., Kupriyanov, I., Borzdov, Y., Nechaev, D., Bataleva, Y., HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals, 7, 2017, 119. 39. Chernov, A.A., Crystallization processes. Cardona, M., Fulde, P., Queisser, H.-J., (eds.) Modern Crystallography III. Crystal Growth, 1984, Springer Verlag, Berlin, 1–297.