Инд. авторы: Pilitsyna A.V., Tretyakov A.A., Degtyarev K.E., Alifirova T.A., Batanova, Cuthbert, Kovalchuk, Ermolaev
Заглавие: Multi-stage metamorphic evolution and protolith reconstruction of spinel-bearing and symplectite-bearing ultramafic rocks in the Zheltau massif, Southern Kazakhstan (Central Asian Orogenic Belt)
Библ. ссылка: Pilitsyna A.V., Tretyakov A.A., Degtyarev K.E., Alifirova T.A., Batanova, Cuthbert, Kovalchuk, Ermolaev Multi-stage metamorphic evolution and protolith reconstruction of spinel-bearing and symplectite-bearing ultramafic rocks in the Zheltau massif, Southern Kazakhstan (Central Asian Orogenic Belt) // Gondwana Research. - 2018. - Vol.64. - P.11-34.
Внешние системы: DOI: 10.1016/j.gr.2018.06.005; РИНЦ: 35761395; SCOPUS: 2-s2.0-85052243803; WoS: 000454669700002;
Реферат: eng: Spinel-bearing ultramafic rocks, metamorphosed in high-pressure conditions, are described from the metamorphic complexes of the western part of the Central Asian Orogenic Belt (CAOB) in the Chu-Yili region in Southern Kazakhstan. They comprise small bodies of magnetite-bearing serpentinites, Cr-spinel-bearing serpentinized and amphibolitized dunites and peridotites enclosed by strongly retrogressed kyanite-bearing paragneisses. Apart from serpentinization, the ultramafic rocks were also overprinted by later rodingitization expressed in the development of the index-minerals hydrogrossular, prehnite and vuagnatite. Cr-spinel-bearing peridotites are characterized by extensive development of symplectitic and coronitic microtextures, which are interpreted to have been formed after garnet breakdown during decompression (i.e. exhumation). Calculated pressure (P) and temperature (T) obtained by phase diagram modeling and conventional geothermobarometry for the symplectites were P 11.5–14.5 kbar for a wide temperature range of T 600–850 °C, which followed the transition from garnet to spinel peridotite. Major and trace element whole-rock geochemical characteristics of the spinel-bearing ultramafic rocks as well as their structurally close relations indicate their mutual origin as parts of an oceanic cumulate complex of an arc-basin system. The protoliths were probably plagioclase-bearing (thus shallow, crustal) ultramafic rocks and troctolites, subducted to eclogite facies conditions and then exhumed along with other metamorphic complexes of the Zheltau massif. These spinel-bearing ultramafic rocks could be classified as crustal formations in accordance with the inferred depths of their origin (<5 kbar), in common with many HP ultramafic/mafic complexes in the CAOB. However, strongly depleted geochemical signatures of the rocks, together with the distinctive microtextural features observed in the spinel peridotites, are unique, and their occurrence in the western CAOB is described here for the first time.
Ключевые слова: EXPERIMENTAL CALIBRATION; TIEN-SHAN; KOKCHETAV MASSIF; CONTINENTAL-CRUST; GARNET-PERIDOTITES; HIGH-PRESSURE; MID-ATLANTIC RIDGE; NORTHERN TIANSHAN; Cumulate; West Central Asian Orogenic Belt; HP metamorphism; Cpx-Opx-Spl symplectite; Spinel peridotite; UPPER-MANTLE PERIDOTITES; SOUTHWESTERN TIANSHAN;
Издано: 2018
Физ. характеристика: с.11-34
Цитирование: 1. Abdulin, A.A., Volkov, V.M., Scherba, G.N., Chu-Yili Belt. Geology of the Chu-Yili Region. 1980, NAUKA, Alma-Ata (504 pp., in Russian). 2. Alexeiev, D.V., Ryazantsev, A.V., Kröner, A., Tretyakov, A.A., Xia, X., Liu, D.Y., Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: Implications for the earliest stages of accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences 42 (2011), 805–820, 10.1016/j.jseaes.2010.09.004. 3. Barnes, S.J., Roeder, P.L., The range of spinel compositions in terrestrial Mafic and ultramafic rocks. Journal of Petrology 42 (2001), 2279–2302, 10.1093/petrology/42.12.2279. 4. Beyer, E.E., Griffin, W.L., O'Reilly, S.Y., Transformation of Archaean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region, Norway. Journal of Petrology 47 (2006), 1611–1636, 10.1093/petrology/egl022. 5. Bilgrami, S.A., Howie, R.A., The mineralogy and petrology of a rodingite dike, Hindubagh, Pakistan. American Mineralogist 45 (1960), 791–801. 6. Biryukov, V.M., High-pressure Complexes of the Fold-and-thrust Belts. 1988, NAUKA, Moscow (208 pp., in Russian). 7. Bodinier, J.L., Godard, M., Orogenic, Ophiolitic, and Abyssal Peridotites, Treatise on Geochemistry. Second edition, 2003, 10.1016/B978-0-08-095975-7.00204-7. 8. Brey, G.P., Kohler, T., Geothermobarometry in 4-phase lherzolites. 2. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31 (1990), 1353–1378, 10.1093/petrology/31.6.1353. 9. Brueckner, H.K., Medaris, L.G., A general model for the intrusion and evolution of ‘mantle’ garnet peridotites in high-pressure and ultra-high-pressure metamorphic terrains. Journal of Metamorphic Geology 18 (2000), 123–133, 10.1046/j.1525-1314.2000.00250.x. 10. Cabanis, B., Lecolle, M., Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et lamise en evidence des processus demelange et/ou de contamination crustale. Compte Rendus de I'Académie des Sciences Series II, 309, 1989, 2023–2029. 11. Carswell, D.A., Harvey, M.A., Al-Samman, A., The Petrogenesis of constraining Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bulletin of the Mineral Research and Exploration 106 (1983), 727–750. 12. Chavagnac, V., Jahn, B., Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology 133 (1996), 29–51, 10.1016/S0009-2541(96)00068-X. 13. Connolly, J.A.D., Multivariable phase-diagrams: an algorithm based on generalized thermodynamics. American Journal of Science 290 (1990), 666–718, 10.2475/ajs.290.6.666. 14. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236 (2005), 524–541, 10.1016/j.epsl.2005.04.033. 15. Craw, D., Landis, C.A., Kawachi, Y., Vuagnatite in New Zealand (Note). New Zealand Journal of Geology and Geophysics 22 (1979), 627–629, 10.1080/00288306.1979.10424172. 16. Cruciani, G., Franceschelli, M., Groppo, C., Brogioni, N., Vaselli, O., Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from the Sierra de San Luis (Argentina): a key to post-magmatic evolution. Journal of Metamorphic Geology 26 (2008), 759–774, 10.1111/j.1525-1314.2008.00786.x. 17. Degtyarev, K.E., Tectonic Evolution of Early Paleozoic Island-arc Systems and Formation of Caledonides Continental Crust in Kazakhstan. 2012, GEOS, Moscow (289 pp., in Russian). 18. Degtyarev, K., Yakubchuk, A., Tretyakov, A., Kotov, A., Kovach, V., Precambrian geology of the Kazakh Uplands and Tien Shan: an overview. Gondwana Research 47 (2017), 44–75, 10.1016/j.gr.2016.12.014. 19. Dobretsov, N.L., Sobolev, N.V., Shatsky, V.S., Aschepkov, A.B., Bakirov, A.B., Gabov, N.F. et al., Eclogites and Glaucophane-bearing Schists of the Folded Areas. 1989, NAUKA, Novosibirsk (236 pp., in Russian). 20. Droop, T.R.G., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51 (1987), 431–435, 10.1180/minmag.1987.051.361.10. 21. Ernst, W.G., Mosenfelder, G.L., Leech, M.L., Liu, J., H2O recycling during continental collision: phase-equilibrium and kinetic considerations. Hacker, B.R., Liou, J.G., (eds.) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-pressure Rocks, 1998, Kluwer Academic Publishers, Dordrecht, 275–295. 22. Ernst, W., Hacker, B., Liou, J., Petrotectonics of ultrahigh-pressure crustal and upper-mantle rocks — implications for Phanerozoic collisional orogens. Sears, J.W., Harms, T.A., Evenchick, C.A., (eds.) Whence Mt. Inq. Into Evol. Orog. Syst. A Vol. Honor Raymond A. Price Geol. Soc. Am. Specia Pap, 433, 2007, 27–49, 10.1130/2007.2433(02). 23. Field, S.W., Haggerty, S.E., Symplectites in upper mantle peridotites: development and implications for the growth of subsolidus garnet, pyroxene and spinel. Contributions to Mineralogy and Petrology 118 (1994), 138–156, 10.1007/BF01052865. 24. Flanagan, F.J., U.S. Geological Survey silicate rock standards. Geochimica et Cosmochimica Acta 31:3 (1967), 289–308, 10.1016/0016-7037(67)90043-9. 25. Gallien, F., Mogessie, A., Hauzenberger, C.A., Bjerg, E., Delpino, S., Castro De Machuca, B., On the origin of multi-layer coronas between olivine and plagioclase at the gabbro-granulite transition, Valle Fértil-La Huerta Ranges, San Juan Province, Argentina. Journal of Metamorphic Geology 30 (2012), 281–302, 10.1111/j.1525-1314.2011.00967.x. 26. Godard, G., Martin, S., Petrogenesis of kelyphites in garnet peridotites: a case study from the Ulten zone, Italian Alps. Journal of Geodynamics 30 (2000), 117–145, 10.1016/S0264-3707(99)00030-7. 27. Godard, G., Martin, S., Prosser, G., Kienast, J.R., Morten, L., Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics 259 (1996), 313–341, 10.1016/0040-1951(95)00145-X. 28. Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters 267 (2008), 410–425, 10.1016/j.epsl.2007.11.058. 29. Godard, M., Awaji, S., Hansen, H., Hellebrand, E., Brunelli, D., Johnson, K., Yamasaki, T., Maeda, J., Abratis, M., Christie, D., Kato, Y., Mariet, C., Rosner, M., Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (2009), 110–122, 10.1016/j.epsl.2008.12.034. 30. Groppo, C., Rolfo, F., Liu, Y.C., Deng, L.P., Wang, A.D., P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): how far can the thermodynamic modeling lead us?. Lithos 226 (2015), 183–200, 10.1016/j.lithos.2014.11.013. 31. Hammarstrom, J.M., Zen, E., Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist 71 (1986), 1297–1313. 32. Hegner, E., Klemd, R., Kröner, A., Corsini, M., Alexeiev, D.V., Iaccheri, L.M., Zack, T., Dulski, P., Xia, X., Windley, B.F., Mineral ages and P-T conditions of late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. American Journal of Science 310 (2010), 916–950, 10.2475/09.2010.07. 33. Holland, T.J.B., Powell, R., Thermodynamics of order-disorder in minerals. 2. Symmetric formulism applied to solid solutions. American Mineralogist 81 (1996), 1425–1437. 34. Holland, T.J.B., Powell, R., An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16 (1998), 309–343, 10.1111/j.1525-1314.1998.00140.x. 35. Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Sisson, V.B., Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72 (1987), 231–239. 36. Irvine, T.N., Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8 (1971), 523–548, 10.1139/e71-055. 37. Jahn, B.-M., Geochemical and isotopic characteristics of UHP eclogites of the Dabie orogen: implications for continental subduction and collisional tectonics. Hacker, B.R., Liou, J.G., (eds.) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-pressure Rocks, 1998, Kluwer Academic Publishers, Dordrecht, 275–295. 38. Janák, M., Froitzheim, N., Vrabec, M., Krogh Ravna, E.J., De Hoog, J.C.M., Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps. Journal of Metamorphic Geology 24 (2006), 19–31, 10.1111/j.1525-1314.2005.00619.x. 39. Jaques, A.L., Chappell, B.W., Taylor, S.R., Geochemistry of cumulus peridotites and gabbros from the Marum ophiolite complex, northern Papua New Guinea. Contributions to Mineralogy and Petrology 82 (1983), 154–164, 10.1007/BF01166610. 40. Jennings, E.S., Holland, T.J.B., A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. Journal of Petrology 56 (2015), 869–892, 10.1093/petrology/egv020. 41. Johnson, M., Rutherford, M.J., Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera. Geology 17 (1989), 837–841, 10.1130/0091-7613(1989)017<0837:ecotai>2.3.co;2. 42. Katayama, I., Maruyama, S., Parkinson, C.D., Terada, K., Sano, Y., Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters 188 (2001), 185–198, 10.1016/S0012-821X(01)00319-3. 43. Klemd, R., Hegner, E., Bergmann, H., Pfänder, J.A., Li, J.L., Hentschel, F., Eclogitization of transient crust of the Aktyuz Complex during Late Palaeozoic plate collisions in the Northern Tianshan of Kyrgyzstan. Gondwana Research 26 (2014), 925–941, 10.1016/j.gr.2013.08.018. 44. Klemd, R., Gao, J., Li, J.L., Meyer, M., Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): geodynamic implications. Gondwana Research 28 (2015), 1–25, 10.1016/j.gr.2014.11.008. 45. Klemme, S., The influence of Cr on the garnet-spinel transition in the Earth's mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos 77 (2004), 639–646, 10.1016/j.lithos.2004.03.017. 46. Klemme, S., Ivanic, T.J., Connolly, J.A.D., Harte, B., Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112 (2009), 986–991, 10.1016/j.lithos.2009.05.007. 47. Kotková J., High-pressure granulites of the Bohemian Massif: recent advances and open questions. Journal of Geosciences 52 (2007), 45–71, 10.3190/jgeosci.006. 48. Kröner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.M., Gruschka, S., Khain, E.V., Demoux, A., Wingate, M.T.D., Accretionary growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian–Nubian shield. in “4-D Framework of Continental Crust”. Hatcher, R.D., Carlson, M.P., McBride, J.H., Martínez, Catalán, J.R., (eds.) Geological Society of America Memoirs, 2007, 181–209, 10.1130/2007.1200(11). 49. Kröner, A., Alexeiev, D.V., Hegner, E., Rojas-Agramonte, Y., Corsini, M., Chao, Y., Wong, J., Windley, B.F., Liu, D., Tretyakov, A.A., Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan. Gondwana Research 21 (2012), 901–927, 10.1016/j.gr.2011.05.010. 50. Kushev, V.G., Vinogradov, D.P., Metamorphogenic Eclogites. 1978, NAUKA, Novosibirsk (112 pp., in Russian). 51. Lang, H.M., Wachter, A.J., Peterson, V.L., Ryan, J.G., Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolites from the Buck Creek ultramafic body, North Carolina Blue Ridge. American Mineralogist 89 (2004), 20–30, 10.2138/am-2004-0104. 52. Leake, B.E., Wooley, A.R., Arps, C.E. et al., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 35 (1997), 219–246. 53. Lexa, O., PyWerami: countour/3D plotting program for Perple_X WERAMI data (version 2.0.1) [software]. Available from http://petrol.natur.cuni.cz/~ondro/pywerami:home, 2011. 54. Li, X.P., Zhang, L.F., Wang, Z.L., Geochemistry of rodingite derived from eclogite in western Tianshan, China. Acta Petrologica Sinica 24 (2008), 711–717, 10.1111/j.1525-1314.2007.00700.x. 55. Liu, X., Su, W., Gao, J., Li, J.-L., Jiang, T., Continental crust material in subduction complex in southwestern Tienshan – geochemical implications from metabasic rocks. Acta Petrologia Sinica 29:5 (2013), 1675–1684. 56. Loury, C., Rolland, Y., Cenki-Tok, B., Lanari, P., Guillot, S., Late Paleozoic evolution of the South Tien Shan: Insights from P-T estimates and allanite geochronology on retrogressed eclogites (Chatkal range, Kyrgyzstan). Journal of Geodynamics 96 (2016), 62–80, 10.1016/j.jog.2015.06.005. 57. MacGregor, I.D., Empirical geothermometers and geothermobarometers for spinel peridotite phase assemblages. International Geology Review 57 (2015), 1940–1974, 10.1080/00206814.2015.1045307. 58. Medaris, L.G., Beard, B.L., Johnson, C.M., Valley, J.W., Spicuzza, M.J., Jelínek, E., Mísâr, Z., Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geologische Rundschau 84 (1995), 489–505, 10.1007/BF00284516. 59. Medaris, G., Wang, H., Jelínek, E., Mihaljevič M., Jakeš P., Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82 (2005), 1–23, 10.1016/j.lithos.2004.12.004. 60. Merkulova, M.V., Muñoz, M., Brunet, F., Vidal, O., Hattori, K., Vantelon, D., Trcera, N., Huthwelker, T., Experimental insight into redox transfer by iron- and sulfur-bearing serpentinite dehydration in subduction zones. Earth and Planetary Science Letters 479 (2017), 133–143, 10.1016/j.epsl.2017.09.009. 61. Meyer, M., Klemd, R., Konopelko, D., High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone. Lithos 177 (2013), 207–225, 10.1016/j.lithos.2013.06.015. 62. Meyer, M., Klemd, R., Hegner, E., Konopelko, D., Subduction and exhumation mechanisms of ultra-high and high-pressure oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan). Journal of Metamorphic Geology 32 (2014), 861–884, 10.1111/jmg.12097. 63. Mongkoltip, P., Ashworth, J.R., Quantitative estimation of an open-system symplectite-forming reaction: restricted diffusion of Al and Si in coronas around olivine. Journal of Petrology 24 (1983), 635–661, 10.1093/petrology/24.4.635. 64. Morimoto, N., Fabries, J., Ferguson, A.K. et al., Nomenclature of pyroxenes. American Mineralogist 73 (1988), 1123–1133. 65. Morishita, T., Arai, S., Evolution of spinel-pyroxene symplectite in spinel-lherzolites from the Horoman Complex, Japan. Contributions to Mineralogy and Petrology 144 (2003), 509–522, 10.1007/s00410-002-0417-y. 66. Müntener, O., Manatschal, G., Desmurs, L., Pettke, T., Plagioclase peridotites in ocean-continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. Journal of Petrology 51 (2009), 255–294, 10.1093/petrology/egp087. 67. Nedovizin, A.A., To the stratigraphy of the Akzhal formation of the Chu-Ili Mountains. Izvestiya AN KazSSR. Series Geod, 2, 1961, 26–34 (in Russian). 68. Newton, R.C., Charlu, T.V., Kleppa, O.J., Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta 44 (1980), 933–941, 10.1016/0016-7037(80)90283-5. 69. Nikitina, O.I., Popov, L.E., Neuman, R.B., Bassett, M.G., Holmer, L.E., Mid Ordovician (Darriwilian) brachiopods of South Kazakhstan. Bassett, M.G., Deisler, V.K., (eds.) Studies in Palaeozoic Palaeontology National Museum of Wales Geological Series No. 25, 2006, 145–222 (Cardiff). 70. Obata, M., Kelyphite and symplectite: textural and mineralogical diversities and universality, and a new dynamic view of their structural formation. Sharkov, Evgenii, (eds.) New Frontiers in Tectonic Research-General Problems, Sedimentary Basins and Island Arcs, 2011, InTech, 10.5772/20265. 71. Obata, M., Ozawa, K., Topotaxic relationships between spinel and pyroxene in kelyphite after garnet in mantle-derived peridotites and their implications to reaction mechanism and kinetics. Mineralogy and Petrology 101 (2011), 217–224, 10.1007/s00710-011-0145-y. 72. Obata, M., Ozawa, K., Naemura, K., Miyake, A., Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics. Mineralogy and Petrology 107 (2013), 881–895, 10.1007/s00710-012-0260-4. 73. Okamoto, K., Liou, J.G., Ogasawara, Y., Petrology of the diamond-grade eclogite in the Kokchetav Massif, northern Kazakhstan. Island Arc 9 (2000), 379–399, 10.1046/j.1440-1738.2000.00284.x. 74. Orozbaev, R.T., Takasu, A., Bakirov, A.B., Tagiri, M., Sakiev, K.S., Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, Northern Tien-Shan, Kyrgyzstan: a record from initiation of subduction through to oceanic closure by continent-continent collision. Journal of Metamorphic Geology 28 (2010), 317–339, 10.1111/j.1525-1314.2010.00865.x. 75. Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234 (2006), 179–210, 10.1016/j.chemgeo.2006.04.011. 76. Pearce, J.A., Parkinson, I.J., Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society of London, Special Publication 76 (1993), 373–403, 10.1144/GSL.SP.1993.076.01.19. 77. Pearce, J.A., Lippard, S.J., Roberts, S., Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society of London, Special Publication 16 (1984), 77–94, 10.1144/GSL.SP.1984.016.01.06. 78. Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology 139 (2000), 36–53, 10.1007/s004100050572. 79. Pearce, J.A., Robinson, P., Yang, J., Identification and interpretation of eclogite protoliths using immobile element geochemistry: some new methodologies. American Geophysical Union, Fall Meeting 2011, 2011 (abstract #V22C-07). 80. Pilitsyna, A.V., Tretyakov, A.A., Degtyarev, K.E., Cuthbert, S.J., Batanova, V.G., Kovalchuk, E.V., Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications. Journal of Asian Earth Sciences 153 (2018), 325–345, 10.1016/j.jseaes.2017.03.027. 81. Proyer, A., The preservation of high-pressure rocks during exhumation: metagranites and metapelites. Lithos 70 (2003), 183–194, 10.1016/S0024-4937(03)00098-7. 82. Reverdatto, V.V., Selyatitskiy, A.Y., Carswell, D.A., Geochemical distinctions between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes. Russian Geology and Geophysics 49 (2008), 73–90, 10.1016/j.rgg.2008.01.002. 83. Rice, J.M., Metamorphism of rodingites: part I. Phase relations in a portion of the system CaO-MgO-Al2O3-SiO2-CO2-H2O. American Journal of Science 283:A (1983), 121–510. 84. Ruiz Cruz, M.D., Puga, E., Nieto, J.M., Silicate and oxide exsolution in pseudo-spinifex olivine from metaultramafic rocks of the Betic ophiolitic association: a TEM study. American Mineralogist 84 (1999), 1915–1924, 10.2138/am-1999-11-1219. 85. Ryazantsev, A.V., Mikolaychuk, A.V., Tolmacheva, T.Yu., Degtyarev, K.E., Kotov, A.B., Nikitina, O.I., Mamonov, E.P., Zorin, A.E., Ophiolites and Island-arc Complexes of Dzhalair-Naiman Zone and Chu-Kendyktas Massifs (Southern Kazakhstan): Structures, Ages and Formation Settings//Geodynamics of Intracontinental Orogens and Geoecological Problems. Moscow – Bishkek. 4C, 2009, 53–58. 86. Ryazantsev, A.V., Degtyrev, K.E., Kotova, A.B., Salynikova, E.B., Anisimova, I.V., Yakovleva, S.Z., Ophiolites of Dzhalair-Naiman zone (Southern Kazakhstan): sequences structure, ages interpretation. Doklady RAS 427:3 (2009), 359–364, 10.1134/S1028334X09060038. 87. Sarp, H., Bertrand, J., McNear, E., Vuagnatite, CaAl(OH)SiO4; a new natural calcium aluminum nesosilicate. American Mineralogist 61 (1976), 825–830. 88. Schmidt, M.W., Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110 (1992), 304–310, 10.1007/BF00310745. 89. Soldner, J., Oliot, E., Schulmann, K., Stipska, P., Kusbach, V., Anczkiewicz, R., Metamorphic P-T-t-d evolution of (U)HP metabasites from the South Tianshan accretionary complex (NW China) – implications for rock deformation during exhumation in a subduction channel. Gondwana Research 47 (2017), 161–187, 10.1016/j.gr.2016.07.007. 90. Song, S., Zhang, L., Niu, Y., Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. American Mineralogist 89 (2004), 1330–1336, 10.2138/am-2004-8-922. 91. Song, S., Su, L., Niu, Y., Zhang, G., Zhang, L., Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review. Journal of Asian Earth Sciences 35 (2009), 285–297, 10.1016/j.jseaes.2008.11.009. 92. Streckeisen, A., Classification of the common igneous rocks by means of their chemical composition: a provisional attempt. Neues Jahrbuch fur Mineralogie, Monatschefte, 1976, 1–15. 93. Sun, S.-s., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London, Special Publication 42 (1989), 313–345, 10.1144/GSL.SP.1989.042.01.19. 94. Tan, Z., Agard, P., Gao, J., John, T., Li, J.L., Jiang, T., Bayet, L., Wang, X.S., Zhang, X., P–T–time-isotopic evolution of coesite-bearing eclogites: implications for exhumation processes in SW Tianshan. Lithos 278–281 (2017), 1–25, 10.1016/j.lithos.2017.01.010. 95. Taylor, W.R., An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile Iherzolite and garnet websterite. Neues Jahrbuch für Mineralogie Abhandlungen 172 (1998), 381–408, 10.1127/njma/172/1998/381. 96. Tretyakov, A.A., Degtyarev, K.E., Kovach, V.P., Kotov, A.B., Salnikova, E.B., Pilitsyna, A.V., Yakovleva, S.Z., The migmatite–gneiss complex of the Chuya–Kendyktas sialic massif (Southern Kazakhstan): structure and age. Doklady Earth Sciences, 467, 2016, 10.1134/S1028334X16030156. 97. Tretyakov, A.A., Degtyarev, K.E., Sal'nikova, E.B., Shatagin, K.N., Kotov, A.B., Ryazantsev, A.V., Pilitsyna, A.V., Yakovleva, S.Z., Tolmacheva, E.V., Plotkina, Y.V., Paleoproterozoic anorogenic granitoids of the Zheltav sialic massif (Southern Kazakhstan): structural position and geochronology. Doklady Earth Sciences, 466, 2016, 10.1134/S1028334X16010165. 98. Turkin, A.I., Chromium-bearing Garnets and Spinels as Index-minerals of P-T Conditions of Peridotites Formation (Experimental Study). 2011 (Doctor of Sci. Thesis. Novosibirsk, Russia). 99. Turkin, A.I., Sobolev, N.V., Pyrope-knorringite garnets: overview of experimental data and natural parageneses. Russian Geology and Geophysics 50 (2009), 1169–1182, 10.1016/j.rgg.2009.11.015. 100. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. American Mineralogy 95 (2010), 185–187, 10.2138/am.2010.3371. 101. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (2007), 31–47, 10.1144/0016-76492006-022. 102. Workman, R.K., Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231 (2005), 53–72, 10.1016/j.epsl.2004.12.005. 103. Zhang, R.Y., Liou, J.G., Ernst, W.G., Coleman, R.G., Sobolev, N.V., Shatsky, V.S., Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology 15 (1997), 479–496, 10.1111/j.1525-1314.1997.00035.x. 104. Zhang, R.Y., Liou, J.G., Yang, J.S., Yui, T.F., Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology 18 (2000), 149–166, 10.1046/j.1525-1314.2000.00248.x. 105. Zhang, C., van Roermund, H., Zhang, L., Orogenic Garnet Peridotites. Tools to Reconstruct Paleo-geodynamic Settings of Fossil Continental Collision Zones, Ultrahigh-Pressure Metamorphism. 2011, 10.1016/B978-0-12-385144-4.00015-1. 106. Zhang, L.F., Du, J.X., Lü Z., Yang, X., Gou, L.L., Xia, B., Chen, Z.Y., Wei, C.J., Song, S.G., A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: peak metamorphic age and P-T path. Chinese Science Bulletin 58 (2013), 4378–4383, 10.1007/s11434-013-6074-x. 107. Ziberna, L., Klemme, S., Nimis, P., Garnet and spinel in fertile and depleted mantle: Insights from thermodynamic modelling. Contributions to Mineralogy and Petrology 166 (2013), 411–421, 10.1007/s00410-013-0882-5.