Инд. авторы: Korobeynikov S.N., Alyokhin V.V.,, Babichev A.V.
Заглавие: On the molecular mechanics of single layer graphene sheets
Библ. ссылка: Korobeynikov S.N., Alyokhin V.V.,, Babichev A.V. On the molecular mechanics of single layer graphene sheets // International Journal of Engineering Science. - 2018. - Vol.133. - P.109-131.
Внешние системы: DOI: 10.1016/j.ijengsci.2018.09.001; РИНЦ: 35731528; SCOPUS: 2-s2.0-85053794019; WoS: 000450385300008;
Реферат: eng: The molecular structural mechanics (MSM) method is developed by applying beam elements to model bonded interactions between carbon atoms in the atomic lattices of single-layer graphene sheets (SLGSs). The novelty of the approach developed in this paper lies in the accurate adjustment of the geometric and material parameters of Bernoulli–Euler beam elements to simulate reference mechanical moduli (2D Young's modulus, Poisson's ratio, and bending rigidity modulus) of graphene. The MSM method with an advanced geometric and material parameter set of Bernoulli–Euler beam elements is implemented by means of the commercial MSC.Marc finite element (FE) code. We also employ the standard molecular mechanics (MM) method using the DREIDING force field (see Mayo et al. The Journal of Physical Chemistry, 1990, 94: 8897–8909). We implemented this force field in the homemade PIONER FE code using a modified parameter set which reproduces the mechanical moduli of graphene reasonably well. Computer simulations show that the free vibration frequencies and modes of SLGSs obtained using the standard MM and MSM methods converge. However, the buckling forces of compressed SLGSs obtained by the two methods provide acceptable convergence only for the lowest values of the critical forces.
Ключевые слова: VIBRATION ANALYSIS; TENSILE BEHAVIOR; BUCKLING ANALYSIS; ELASTIC PROPERTIES; SPRING-MASS MODEL; NANO-STRUCTURED MATERIALS; STABILITY ANALYSIS; WALLED CARBON NANOTUBES; Mechanical moduli; Molecular structural mechanics; Molecular mechanics; Graphene; FINITE-ELEMENT-METHOD; NUMERICAL-SIMULATION;
Издано: 2018
Физ. характеристика: с.109-131
Цитирование: 1. Alyokhin, V.V., Annin, B.D., Babichev, A.V., Korobeynikov, S.N., Free vibrations and buckling of graphene sheets. Doklady Physics 58:11 (2013), 487–490. 2. Alzebdeh, K.I., Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet. International Journal of Mechanics and Materials in Design 8 (2012), 269–278. 3. Alzebdeh, K.I., An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Communications 177 (2014), 25–28. 4. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N., Computer simulation of nanotube contact. Mechanics of Solids 45:3 (2010), 352–369. 5. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N., Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mechanics of Solids 47:5 (2012), 544–559. 6. Annin, B.D., Korobeynikov, S.N., Babichev, A.V., Computer simulation of a twisted nanotube buckling. Journal of Applied and Industrial Mathematics 3:3 (2009), 318–333. 7. Ansari, R., Mahmoudinezhad, E., Characterizing the mechanical properties of carbon nanocones using an accurate spring-mass model. Computational Materials Science 101 (2015), 260–266. 8. Ansari, R., Rouhi, H., Aryayi, M., Nanoscale finite element models for vibrations of single-walled carbon nanotubes: Atomistic versus continuum. Applied Mathematics and Mechanics 34:10 (2013), 1187–1200. 9. Arghavan, S., Singh, A.V., Atomic lattice structure and continuum plate theories for the vibrational characteristics of graphenes. Journal of Applied Physics, 110, 2011, 084308. 10. Arghavan, S., Singh, A.V., On the vibrations of single-walled carbon nanotubes. Journal of Sound and Vibration 330 (2011), 3102–3122. 11. Avila, A.F., Eduardo, A.C., Neto, A.S., Vibrational analysis of graphene based nanostructures. Computers and Structures 89 (2011), 878–892. 12. Awang, M., Mohammadpour, E., Muhammad, I.D., Finite element modeling of nanotube structures - linear and non-linear models. 2016, Springer, Cham, Heidelberg. 13. Bathe, K.-J., Finite element procedures. 1996, Prentice Hall, Upper Saddle River, New Jersey. 14. Batra, R.C., Elements of continuum mechanics. 2006, AIAA, Reston. 15. Berinskii, I.E., Borodich, F.M., Elastic in-plane properties of 2D linearized models of graphene. Mechanics of Materials 62 (2013), 60–68. 16. Berinskii, I.E., Krivtsov, A.M., A hyperboloid structure as a mechanical model of the carbon bond. International Journal of Solids and Structures 96 (2016), 145–152. 17. Berinskii, I.E., Krivtsov, A.M., Kudarova, A.M., Bending stiffness of a graphene sheet. Physical Mesomechanics 17:4 (2014), 356–364. 18. Burkert, U., Allinger, N.L., Molecular mechanics. 1982, American Chemical Society, Washington, D.C. 19. Cao, G., Atomistic studies of mechanical properties of graphene. Polymers 6 (2014), 2404–2432. 20. Chen, W.H., Cheng, H.C., Liu, Y.L., Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Computational Materials Science 47 (2010), 985–993. 21. Cheng, H.C., Liu, Y.L., Wub, C.H., Chen, W.H., On radial breathing vibration of carbon nanotubes. Computer Methods in Applied Mechanics and Engineering 199 (2010), 2820–2827. 22. Dominguez-Rodriguez, G., Tapia, A., Aviles, F., An assessment of finite element analysis to predict the elastic modulus and poisson's ratio of single-wall carbon nanotubes. Computational Materials Science 82 (2014), 257–263. 23. Eberhardt, O., Wallmersperger, T., Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95 (2015), 166–180. 24. Feng, C., Liew, K.M., He, P., Wu, A., Predicting mechanical properties of carbon nanosprings based on molecular mechanics simulation. Composite Structures 114 (2014), 41–50. 25. Firouz-Abadi, R.D., Moshrefzadeh-Sany, H., Mohammadkhani, H., Sarmadi, M., A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet. Solid State Communications 225 (2016), 12–16. 26. Gates, T.S., Odegard, G.M., Frankland, S.J.V., Clancy, T.C., Computational materials: Multi-scale modeling and simulation of nanostructured materials. Composites Science and Technology 65 (2005), 2416–2434. 27. Georgantzinos, S.K., Giannopoulos, G.I., Thermomechanical buckling of single walled carbon nanotubes by a structural mechanics method. Diamond and Related Materials 80 (2017), 27–37. 28. Georgantzinos, S.K., Giannopoulos, G.I., Anifantis, N.K., Numerical investigation of elastic mechanical properties of graphene structures. Materials and Design 31 (2010), 4646–4654. 29. Georgantzinos, S.K., Giannopoulos, G.I., Anifantis, N.K., Coupled thermomechanical behavior of graphene using the spring-based finite element approach. Journal of Applied Physics, 120, 2016, 014305. 30. Georgantzinos, S.K., Giannopoulos, G.I., Katsareas, D.E., Kakavas, P.A., Anifantis, N.K., Size-dependent non-linear mechanical properties of graphene nanoribbons. Computational Materials Science 50 (2011), 2057–2062. 31. Georgantzinos, S.K., Giannopoulos, G.I., Pierou, P.K., Anifantis, N.K., Numerical stability analysis of imperfect single-walled carbon nanotubes under axial compressive loads. International Journal of Structural Integrity 6:4 (2015), 423–438. 32. Georgantzinos, S.K., Katsareas, D.E., Anifantis, N.K., Graphene characterization: A fully non-linear spring-based finite element prediction. Physica E 43 (2011), 1833–1839. 33. Georgantzinos, S.K., Markolefas, S., Giannopoulos, G.I., Katsareas, D.E., Anifantis, N.K., Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load. Superlattices and Microstructures 103 (2017), 343–357. 34. Ghaderi, S.H., Hajiesmaili, E., Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method. Materials Science and Engineering: A 582 (2013), 225–234. 35. Ghadyani, G., Öchsner, A., Derivation of a universal estimate for the stiffness of carbon nanotubes. Physica E 73 (2015), 116–125. 36. Ghadyani, G., Soufeiani, L., Öchsner, A., On the characterization of the elastic properties of asymmetric single-walled carbon nanotubes. Journal of Physics and Chemistry of Solids 89 (2016), 62–68. 37. Giannopoulos, G.I., Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Computational Materials Science 53 (2012), 388–395. 38. Giannopoulos, G.I., Fullerenes as mass sensors: A numerical investigation. Physica E 56 (2014), 36–42. 39. Giannopoulos, G.I., Crack identification in graphene using eigenfrequencies. International Journal of Applied Mechanics, 9(1), 2017, 1750009. 40. Giannopoulos, G.I., Georgantzinos, S.K., Establishing detection maps for carbon nanotube mass sensors: Molecular versus continuum mechanics. Acta Mechanica 228 (2017), 2377–2390. 41. Giannopoulos, G.I., Georgantzinos, S.K., Tensile behavior of gallium nitride monolayer via nonlinear molecular mechanics. European Journal of Mechanics - A/Solids 65 (2017), 223–232. 42. Giannopoulos, G.I., Kakavas, P.A., Anifantis, N.K., Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science 41 (2008), 561–569. 43. Giannopoulos, G.I., Liosatos, I.A., Moukanidis, A.K., Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Physica E 44 (2011), 124–134. 44. Giannopoulos, G.I., Tsiros, A.P., Georgantzinos, S.K., Prediction of elastic mechanical behavior and stability of single-walled carbon nanotubes using bar elements. Mechanics of Advanced Materials and Structures 20 (2013), 730–741. 45. Goldstein, R.V., Chentsov, A.V., A discrete-continuous model of a nanotube. Mechanics of Solids 40:4 (2005), 45–59. 46. Goldstein, R.V., Chentsov, A.V., Kadushnikov, R.M., Shturkin, N.A., Methodology and metrology for mechanical testing of nano-and microdimensional objects, materials, and products of nanotechnology. Nanotechnologies in Russia 3:1–2 (2008), 112–121. 47. Guo, X., Leung, A.Y.T., Jiang, H., He, X.Q., Huang, Y., Critical strain of carbon nanotubes: An atomic-scale finite element study. Journal of Applied Mechanics 74:2 (2007), 347–351. 48. Gupta, S.S., Agrawal, P., Batra, R.C., Buckling of single-walled carbon nanotubes using two criteria. Journal of Applied Physics, 119, 2016, 245106. 49. Gupta, S.S., Batra, R.C., Elastic properties and frequencies of free vibrations of single-layer graphene sheets. Journal of Computational and Theoretical Nanoscience 7 (2010), 2151–2164. 50. Haghbin, A., Khalili, S.M.R., Effect of chiral angle on tensile behavior modeling of single-walled carbon nanotubes. Mechanics of Advanced Materials and Structures 21 (2014), 505–515. 51. HarikV. (ed.), Trends in nanoscale mechanics: Mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics. 2014, Springer, Dordrecht. 52. Hollerer, S., Buckling analysis of carbon nanotubes a molecular statics investigation into the influence of non-bonded interactions. International Journal for Numerical Methods in Engineering 91 (2012), 397–425. 53. Hollerer, S., Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes. Computer Methods in Applied Mechanics and Engineering 270 (2014), 220–246. 54. Hollerer, S., Celigoj, C.C., Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model. Computational Mechanics 51 (2013), 765–789. 55. Hu, N., Fukunaga, H., Lu, C., Kameyama, M., Yan, B., Prediction of elastic properties of carbon nanotube reinforced composites. Proceedings of the Royal Society A 461 (2005), 1685–1710. 56. Hu, N., Nunoya, K., Pan, D., Okabe, T., Fukunaga, H., Prediction of buckling characteristics of carbon nanotubes. International Journal of Solids and Structures 44 (2007), 6535–6550. 57. Huang, Y., Wu, J., Hwang, K.C., Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 74, 2006, 245413. 58. Hughes, T.J.R., The finite element method: Linear static and dynamic finite element analysis. 1987, Prentice-Hall, Englewood Cliffs. 59. Kasti, N.A., Zigzag carbon nanotubes - molecular/structural mechanics and the finite element method. International Journal of Solids and Structures 44 (2007), 6914–6929. 60. Korobeinikov, S.N., Agapov, V.P., Bondarenko, M.I., Soldatkin, A.N., The general purpose nonlinear finite element structural analysis program PIONER. Sendov, B., Lazarov, R., Dimov, I., (eds.) Proceedings of International Conference on Numerical Methods and Applications, 1989, Publishing House of the Bulgarian Academy of Science, Sofia, 228–233. 61. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V., Using stability analysis of discrete elastic systems to study the buckling of nanostructures. Archives of Mechanics 64:4 (2012), 367–404. 62. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V., Buckling simulation of single layer graphene sheets by the molecular mechanics method. Pietraszkiewicz, W., Gorski, J., (eds.) Shell Structures: Theory and Applications, Vol. 3. Proceedings of the 10th SSTA International Conference, Gdansk, Poland, 16–18 October 2013, 2014, CRC Press/Balkema, London, 207–210. 63. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V., Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Mathematics and Mechanics of Solids 20:7 (2015), 836–870. 64. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V., Application of the molecular mechanics method to simulation of buckling of single-walled carbon nanotubes. Engineering Fracture Mechanics 130 (2014), 83–95. 65. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V., On mechanical moduli of single layer graphene sheets. Pietraszkiewicz, W., Witkowski, W., (eds.) Shell Structures: Theory and Applications, Vol. 4. Proceedings of the 11th SSTA International Conference, Gdansk, Poland, 11–13 October 2017, 2018, CRC Press/Balkema, London, 109–112. 66. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V., Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mechanica 229:6 (2018), 2343–2378. 67. Lee, J.G., Computational materials science: An introduction. 2nd, 2017, CRC Press, Boca Raton. 68. Leissa, A.W., The free vibration of rectangular plates. Journal of Sound and Vibration 31:3 (1973), 257–293. 69. Leissa, A.W., Qatu, M.S., Vibrations of continuous systems. 2011, McGraw-Hill, New York. 70. Li, C., Chou, T.W., Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces. Composites Science and Technology 63 (2003), 1517–1524. 71. Li, C., Chou, T.W., Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B, 68, 2003, 073405. 72. Li, C., Chou, T.W., A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures 40 (2003), 2487–2499. 73. Li, C., Chou, T.W., Elastic properties of single-walled carbon nanotubes in transverse directions. Physical Review B, 69, 2004, 073401. 74. Li, C., Chou, T.W., Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mechanics of Materials 36 (2004), 1047–1055. 75. Li, C., Chou, T.W., Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Applied Physics Letters 84:1 (2004), 121–123. 76. Li, H., Guo, W., Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C-C bonds. Journal of Applied Physics, 103, 2008, 103501. 77. Liu, B., Zhang, Z., Chen, Y., Atomistic statics approaches - molecular mechanics, finite element method and continuum analysis. Journal of Computational and Theoretical Nanoscience 5 (2008), 1891–1913. 78. Lu, Q., Arroyo, M., Huang, R., Elastic bending modulus of monolayer graphene. Journal of Physics D: Applied Physics, 42, 2009, 102002. 79. Lu, Q., Gao, W., Huang, R., Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modelling and Simulation in Materials Science and Engineering, 19, 2011, 054006. 80. Mahmoudinezhad, E., Ansari, R., Vibration analysis of circular and square single-layered graphene sheets: An accurate spring mass model. Physica E 47 (2013), 12–16. 81. Mahmoudinezhad, E., Ansari, R., Basti, A., Hemmatnezhad, M., An accurate spring-mass finite element model for vibration analysis of single-walled carbon nanotubes. Computational Materials Science 85 (2014), 121–126. 82. Majzoobi, G.H., Payandehpeyman, J., Nojini, Z.B., An investigation into the torsional buckling of carbon nanotubes using molecular and structural mechanics. International Journal of Nanoscience 10 (2011), 989–993. 83. MARC, User's Guide. Vol. B. Element library. 2012, MSC.Software Corp, Santa Ana. 84. Marenić E., Ibrahimbegovic, A., Sorić J., Guidault, P.A., Homogenized elastic properties of graphene for small deformations. Materials 6 (2013), 3764–3782. 85. Mayo, S.L., Olafson, B.D., Goddard III, W.A., DREIDING: A generic force field for molecular simulations. Journal of Physical Chemistry 94 (1990), 8897–8909. 86. Meo, M., Rossi, M., Prediction of young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology 66 (2006), 1597–1605. 87. Merli, R., Lazaro, C., Monleon, S., Domingo, A., Geometrical nonlinear formulation of a molecular mechanics model applied to the structural analysis of single-walled carbon nanotubes. International Journal of Solids and Structures 58 (2015), 157–177. 88. Miao, C.Y., Li, H.J., Guo, W.L., Radial breathing modes of multi-walled carbon nanotubes by an atomic beam-spring model. Science China Physics, Mechanics & Astronomy 55:6 (2012), 940–946. 89. Moghadam, R.M., Hosseini, S.A., Salehi, M., The influence of stone-thrower-wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating timoshenko beam element. Physica E 62 (2014), 80–89. 90. Nasdala, L., Ernst, G., Development of a 4-node finite element for the computation of nano-structured materials. Computational Materials Science 33 (2005), 443–458. 91. Nasdala, L., Kempe, A., Rolfes, R., The molecular dynamic finite element method (MDFEM). CMC: Computers, Materials & Continua 19:1 (2010), 57–104. 92. Nasdala, L., Kempe, A., Rolfes, R., Are finite elements appropriate for use in molecular dynamic simulations?. Composites Science and Technology 72 (2012), 989–1000. 93. Nasdala, L., Kempe, A., Rolfes, R., An elastic molecular model for rubber inelasticity. Computational Materials Science 106 (2015), 83–99. 94. Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E., Equivalent-continuum modeling of nano-structured materials. Composites Science and Technology 62 (2002), 1869–1880. 95. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J., Constitutive modeling of nanotube-reinforced polymer composites. Composites Science and Technology 63 (2003), 1671–1687. 96. Rafiee, R., Heidarhaei, M., Investigation of chirality and diameter effects on the young's modulus of carbon nanotubes using non-linear potentials. Composite Structures 94 (2012), 2460–2464. 97. Rahmandoust, M., Öchsner, A., On finite element modeling of single- and multi-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology 12 (2012), 8129–8136. 98. Rouhi, S., Ansari, R., Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44 (2012), 764–772. 99. Safaei, B., Naseradinmousavi, P., Rahmani, A., Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression. Journal of Molecular Graphics and Modelling 65 (2016), 43–60. 100. Sakhaee-Pour, A., Elastic buckling of single-layered graphene sheet. Computational Materials Science 45 (2009), 266–270. 101. Sakhaee-Pour, A., Elastic properties of single-layered graphene sheet. Solid State Communications 149 (2009), 91–95. 102. Sakhaee-Pour, A., Ahmadian, M., Naghdabadi, R., Vibrational analysis of single-layered graphene sheets. Nanotechnology, 19, 2008, 085702. 103. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A., Potential application of single-layered graphene sheet as strain sensor. Solid State Communications 147 (2008), 336–340. 104. Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Brett, C.M.A., Fernandes, J.V., Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study. Composites Part B: Engineering 75 (2015), 73–85. 105. Scarpa, F., Adhikari, S., Gil, A.J., Remillat, C., The bending of single layer graphene sheets: The lattice versus continuum approach. Nanotechnology, 21, 2010, 125702. 106. Scarpa, F., Adhikari, S., Phani, A.S., Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology, 20, 2009, 065709. 107. Shariyat, M., Sarvi, Z., Asgari, M., A unit-cell-based three-dimensional molecular mechanics analysis for buckling load, effective elasticity and poisson's ratio determination of the nanosheets. Molecular Simulation 42:5 (2016), 353–369. 108. Shenderova, O.A., Zhirnov, V.V., Brenner, D.W., Carbon nanostructures. Critical Reviews in Solid State and Materials Sciences 27:3–4 (2002), 227–356. 109. Shokrieh, M.M., Rafiee, R., Prediction of young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Materials and Design 31 (2010), 790–795. 110. Solyanik-Krassa, K.V., Introduction to solid mechanics. 1976, Leningrad University, Leningrad (in Russian). 111. Suarez-Martinez, I., Grobert, N., Ewels, C.P., Nomenclature of sp2 carbon nanoforms. Carbon 50 (2012), 741–747. 112. Theodosiou, T.C., Saravanos, D.A., Molecular mechanics simulations of graphene using finite elements. European Journal of Computational Mechanics 22:1 (2013), 59–78. 113. Theodosiou, T.C., Saravanos, D.A., Numerical simulation of graphene fracture using molecular mechanics based nonlinear finite elements. Computational Materials Science 82 (2014), 56–65. 114. To, C.W.S., Bending and shear moduli of single-walled carbon nanotubes. Finite Elements in Analysis and Design 42 (2006), 404–413. 115. Tserpes, K.I., Papanikos, P., Finite element modeling of single-walled carbon nanotubes. Composites Part B: Engineering 36 (2005), 468–477. 116. Tserpes, K.I., Papanikos, P., Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites. Tserpes, K.I., Silvestre, N., (eds.) Modeling of Carbon Nanotubes, Graphene and their Composites, Springer Series in Materials Science, 188, 2014, 303–329, 10.1007/978-3-319-01201-8. 117. Wackerfuß J., Molecular mechanics in the context of the finite element method. International Journal for Numerical Methods in Engineering 77 (2009), 969–997. 118. Wan, H., Delale, F., A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45 (2010), 43–51. 119. Wang, C.Y., Wang, C.M., Structural vibration: Exact solutions for strings, membranes, beams, and plates. 2014, CRC Press, Boca Raton. 120. Wei, X., Kysar, J.W., Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. International Journal of Solids and Structures 49 (2012), 3201–3209. 121. Wilmes, A.A.R., Pinho, S.T., A coupled mechanical-charge/dipole molecular dynamics finite element method, with multi-scale applications to the design of graphene nano-devices. International Journal for Numerical Methods in Engineering 100 (2014), 243–276. 122. Xiao, J.R., Gama, B.A., Gillespie Jr., J.W., An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. International Journal of Solids and Structures 42 (2005), 3075–3092. 123. Yengejeh, S.I., Kazemi, S.A., Öchsner, A., On the influence of atomic modifications on the structural stability of carbon nanotube hybrids: Numerical investigation. International Journal of Applied Mechanics, 6(6), 2014, 1450077. 124. Yengejeh, S.I., Kazemi, S.A., Öchsner, A., A primer on the geometry of carbon nanotubes and their modifications. 2015, Springer, N.Y., Dordrecht, London. 125. Yengejeh, S.I., Zadeh, M.A., Öchsner, A., Numerical modeling of eigenmodes and eigenfrequencies of hetero-junction carbon nanotubes with pentagon-heptagon pair defects. Computational Materials Science 92 (2014), 76–83. 126. Yengejeh, S.I., Zadeh, M.A., Öchsner, A., On the tensile behavior of hetero-junction carbon nanotubes. Composites Part B: Engineering 75 (2015), 274–280. 127. Zhao, J., Wang, L., Jiang, J.-W., Wang, Z., Guo, W., Rabczuk, T., A comparative study of two molecular mechanics models based on harmonic potentials. Journal of Applied Physics, 113, 2013, 063509. 128. Ziaee, S., Buckling of defective carbon nanotubes under axial and transverse loads. International Journal of Applied Mechanics, 6(1), 2014, 1450004.