Цитирование: | 1. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Bataleva, Y.V., High-pressure synthesis and characterization of diamond from an Mg–Si–C system. CrystEngComm 17 (2015), 7323–7331, 10.1039/c5ce01265a.
2. Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., Borzdov, Y.M., High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 19 (2017), 4459–4475, 10.1039/c7ce01083d.
3. Palyanov, Y., Kupriyanov, I., Borzdov, Y., Nechaev, D., Bataleva, Y., HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals, 7, 2017, 119, 10.3390/cryst7050119.
4. Khokhryakov, A.F., Palyanov, Y.N., Borzdov, Y.M., Kozhukhov, A.S., Shcheglov, D.V., Influence of a silicon impurity on growth of diamond crystals in the Mg-C system. Diam. Relat. Mater. 87 (2018), 27–34, 10.1016/j.diamond.2018.05.006.
5. Müller, T., Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., Sternschulte, H., Steinmüller-Nethl, D., Becher, C., Atatüre, M., Optical signatures of silicon-vacancy spins in diamond. Nat. Commun., 5, 2014, 3328, 10.1038/ncomms4328.
6. Khokhryakov, A.F., Palyanov, Yu.N., Revealing of dislocations in diamond crystals by the selective etching method. J. Cryst. Growth 293 (2006), 469–474, 10.1016/j.jcrysgro.2006.05.044.
7. Khokhryakov, A.F., Palyanov, Yu.N., Revealing of planar defects and partial dislocations in large synthetic diamond crystals by the selective etching. J. Cryst. Growth 306 (2007), 458–464, 10.1016/j.jcrysgro.2007.05.028.
8. Khokhryakov, A.F., Palyanov, Yu.N., Kupriyanov, I.N., Borzdov, Yu.M., Sokola, A.G., Härtwig, J., Masiello, F., Crystal growth and perfection of large octahedral synthetic diamonds. J. Cryst. Growth 317 (2011), 32–38, 10.1016/j.jcrysgro.2011.01.011.
9. Khokhryakov, A.F., Palyanov, Yu.N., Kupriyanov, I.N., Borzdov, Yu.M., Sokol, A.G., Effect of nitrogen impurity on the dislocation structure of large HPHT synthetic diamond crystals. J. Cryst. Growth 386 (2014), 162–167, 10.1016/j.jcrysgro.2013.09.047.
10. Khokhryakov, A.F., Nechaev, D.V., Palyanov, Yu.N., The dislocation structure of diamond crystals grown on seeds in the Mg-C system. Diam. Relat. Mater. 70 (2016), 1–6, 10.1016/j.diamond.2016.09.012.
11. Khokhryakov, A.F., Nechaev, D.V., Palyanov, Yu.N., Unusual growth macrolayers on {100} faces of diamond crystals from magnesium-based systems. J. Cryst. Growth 455 (2016), 76–82, 10.1016/j.jcrysgro.2016.10.004.
12. Lang, A.R., X-ray topographic and optical imaging studies of synthetic diamond. J. Appl. Crystallogr. 27 (1994), 988–1001.
13. Gaukroger, M.P., Martineau, P.M., Crowder, M.J., Friel, I., Williams, D.D., Twitcher, D.J., X-ray topography studies of dislocations in single crystal CVD diamond. Diam. Relat. Mater. 17 (2008), 262–269, 10.1016/j.diamond.2007.12.036.
14. Umezawa, H., Kato, Y., Watanabe, H., Omer, A.M.M., Yamaguchi, H., Shikata, S., Characterization of crystallographic defects in homoepitaxial diamond films by synchrotron X-ray topography and catodoluminascence. Diam. Relat. Mater. 20 (2011), 523–526, 10.1016/j.diamond.201102.007.
15. Kato, Y., Umezawa, H., Yamaguchi, H., Shikata, S., Structural analysis of dislocations in type-IIa single-crystal diamond. Diam. Relat. Mater. 29 (2012), 37–43, 10.1016/j.diamond.2012.07.008.
16. Tallaire, A., Ouisse, T., Lantreibecq, A., Cours, R., Legros, M., Bensalah, H., Barjon, J., Mille, V., Brinza, O., Achard, J., Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst. Growth Des. 16 (2016), 2741–2746, 10.1021/acs.cgd.6b00053.
17. Tsubouchi, N., Mokuno, Y., Microstructures of threading dislocation bundles included in CVD homoepitaxial diamond plates. Diam. Relat. Mater. 78 (2017), 44–48, 10.1016/j.diamond.2017.07.007.
18. Sangwal, K., Etching of Crystals: Theory, Experiment, and Application. first ed., 1987, Elsevier, Amsterdam.
19. Kamler, G., Borysiuk, J., Weyher, J.L., Presz, A., Wozniak, M., Grzegory, I., Application of orthodox defect-selective etching for studying GaN single crystals, epitaxial layers and device structures. Eur. Phys. J. Appl. Phys. 27 (2004), 247–249, 10.1051/epjap:2004103.
20. Zabels, R., Manika, I., Schwartz, K., Maniks, J., Grants, R., MeV–GeV ion induced dislocation loops in LiF crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 326 (2014), 318–321, 10.1016/j.nimb.2013.10.043.
21. Trukhanov, E.M., Fritzler, K.B., Vasilenko, A.P., Kolesnikov, A.V., Kasimkin, P.V., Moskovskih, V.A., Dislocation structure of Ge crystals grown by low thermal gradient Czochralski technique. J. Cryst. Growth 468 (2017), 457–461, 10.1016/j.jcrysgro.2016.11.051.
22. Turner, S., Idrissi, H., Sartori, A.F., Korneychuck, S., Lu, Y.-G., Verbeeck, J., Schreck, M., Van Tendeloo, G., Direct imaging of boron segregation at dislocations in B:diamond heteroepitaxial films. Nanoscale, 2015, 10.1039/C5NR07535A.
23. Hirsch, P.B., Pirouz, P., Barry, J.C., Platelets, dislocation loops and voidites in diamond. Proc. R. Soc. Lond. A 407 (1986), 239–258, 10.1098/rspa.1986.0095.
24. Evans, T., Kiflawi, I., Luyten, W., van Tendeloo, G., Woods, G.S., Conversion of platelets into dislocation loops and voidite formation in type IaB diamonds. Proc. R. Soc. Lond. A 449 (1995), 295–313.
25. Yin, L.-W., Li, M.-S., Zou, Z.-D., Gong, Z.-G., Hao, Z.-Y., Prismatic dislocation loops and concentric dislocation loops in HPHT-grown diamond single crystals. Mater. Sci. Eng. A343 (2003), 158–162, 10.1016/S0921-5093(02)00385-4.
26. Liu, Y.-Y., Zhang, Q.-Y., Bauer-Grosse, E., Vacancy aggregation in diamond films grown in CH4+H2 atmosphere by MPCVD. Chin. Phys. Lett. 24 (2007), 3502–3505.
27. Friedrich, J., von Ammon, W., Müller, G., Czochralski growth of silicon crystals. Nishinaga, T., Rudolph, P., (eds.) Handbook of Crystal Growth, vol. 2a, 2015, Elsevier, Amsterdam, Holland, 45–104.
28. Friedel, J., Dislocations. first ed., 1964, Pergamon Press, New York.
29. Angus, J.C., Dyble, T.J., Etching models for A {111} diamond surface: calculation of trigon slopes. Surf. Sci. 50 (1975), 157–177.
30. Angus, J.C., Ponton, J.W., Modelling of kink nucleation and propagation along steps of finite length. Surf. Sci. 61 (1976), 451–467.
|