Инд. авторы: Boros E., Kolpakova M.
Заглавие: A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters
Библ. ссылка: Boros E., Kolpakova M. A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters // PLOS ONE. - 2018. - Vol.13. - Iss. 8. - Art.e0202205. - ISSN 1932-6203.
Внешние системы: DOI: 10.1371/journal.pone.0202205; РИНЦ: 35730553; PubMed: 30125301; SCOPUS: 2-s2.0-85051792641; WoS: 000442202100020;
Реферат: eng: The aim of this study is to evaluate the definition of water chemical type, with particular attention to soda brine characteristics by assessing ionic composition and pH values on a large geographic scale and broad salinity (TDS) range of Eurasian inland saline surface waters, in order to rectify the considerable confusion about the exact chemical classification of soda lakes and pans. Data on pH and on the concentration of eight major ions were compiled into a database drawn from Austria, China, Hungary, Kazakhstan, Mongolia, Russia, Serbia, and Turkey. The classification was primarily based on dominant ions exceeding an equivalent percentage of 25 (>25e%) of the total cations or anions, and the e% rank of dominant ions was also identified. We identified four major types: waters dominated by (1) Na-HCO3 (10.0%), (2) Na-HCO3 + CO3 (31.4%), (3) Na-Cl (45.9%), and (4) Na-SO4 (12.7%), considering only the first ion by e% rank. These major types can be divided into 30 subtypes in the dataset, taking into account the e% rank of all dominant ions. The major and subtypes of soda brine can be divided into "Soda" and "Soda-Saline" types."Soda type" when Na+ and HCO3 +/- + CO32- are the first in the rank of dominant ions (>25e%), and "Soda-Saline type" when Na+ is the first in the rank of dominant cations and the sum of HCO3 +/- + CO32- concentration exceeds 25e%, but it is not the first in the rank of dominant anions. Soda-saline type can be considered as a separate evolutionary stage between Soda and Saline types respect to the geochemical interpretation by saturation indexes of brines. The obtained overlapping ranges in distribution demonstrate that a pH measurement alone is not a reliable indicator to classify the permanent alkaline "soda type" and various other types of temporary alkaline waters.
Ключевые слова: COMMUNITIES; WEST-SIBERIA; MICROBIAL DIVERSITY; BOTTOM SEDIMENTS; CARPATHIAN BASIN; CHINESE;
Издано: 2018
Цитирование: 1. Hammer UT. Saline lake ecosystems of the World. Dr W. Junk Publishers, The Hague; 1986. 2. Boros E, V-Balogh K, Vörös L, Horváth Zs. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe). Limnologica. 2017; 62: 38–46. https://doi.org/10.1016/j.limno.2016.10.003 PMID: 28572691 3. Schagerl M, Burian A. The Ecology of African Soda Lakes: Driven by Variable and Extreme Conditions, Chapter14. In: Schagerl M, editor. Soda Lakes of East Africa. Springer International Publishing Switzerland; 2016. pp. 295–320. https://doi.org/10.1007/978-3-319-28622-8_12 4. Schagerl M, Renaut RW. Genesis, Occurrence and Definition of Saline Lakes, Chapter1.1. In: Schagerl M, editor. Soda Lakes of East Africa. Springer International Publishing Switzerland; 2016. pp. 3–9. https://doi.org/10.1007/978-3-319-28622-8_12 5. Grant WD. Introductory Chapter: Half a Lifetime in Soda Lakes. In: Ventosa A, editor. Halophilic Microorganism. Springer-Verlag Berlin Heidelberg; 2004. pp. 17–31. 6. Grant WD. Alkaline environments and biodiversity. In: Gerday C, Glansdorff N, editors. Extremophilies. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford UK; 2006. http://www.eolss.net. 7. Warren JK. Evaporites: Sediments, Resources and Hydrocarbons. Chapter 2: Depositional Chemistry and Hydrology. Springer-Verlag, Berlin, Heidelberg; 2006. pp. 59–136. 8. Jones BE, Grant WD, Duckworth AW, Owenson GG. Microbial diversity of soda lakes. Extremophiles. 1998; 2: 191–200. PMID: 9783165 9. Zavarzin GA. Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Microbiology. 1993; 62: 473–479. 10. Kempe S, Degens ET. An early soda ocean? Chemical Geology. 1985; 53: 95–108. 11. Duckworth AW, Grant WD, Jones BE, van Steenbergen R. Phylogenetic diversity of soda lake alkali-philes. FEMS Microbiol Ecol. 1996; 19: 181–191. 12. Grant WD, Jones BE. Bacteria, Archaea and Viruses of Soda Lakes, Chapter 5. In Schagerl M, editor. Soda Lakes of East Africa. Springer International Publishing Switzerland; 2016. pp. 97–148. https://doi.org/10.1007/978-3-319-28622-8_12 13. Szabó A, Korponai K, Kerepesi Cs, Somogyi B, Vörös L, Bartha D, et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles. 2017; 21(3): 639–649. https://doi.org/10.1007/s00792-017-0932-4 PMID: 28389755 14. Williams WD. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environmental Conservation. 2002; 2: 154–167. 15. Shvartsev L, Kolpakova MN, Isupov VP, Vladimirov AG, Ariunbileg S. Geochemistry and Chemical Evolution of Saline Lakes of Western Mongolia. Geochemistry International. 2014; 52(5): 388–403. 16. Isupov VP, Kolpakova MN, Borzenko SV, Shatskaja SS, Shvartsev SL, Dolgushin AP, et al. Uranium in the Mineralized Lakes of Altai Krai. Doklady Earth Sciences. 2016; 470(2): 1067–1070. 17. Boros E, Ecsedi Z, Oláh J, editors. Ecology and Management of Soda Pans in the Carpathian Basin. Hortobágy Environmental Association, Balmazújváros; 2013. 18. Harper DM, Tebbs E, Bell O, Robinson VJ. Conservation and Management of East Africa’s Soda Lakes, Chapter 14. In: Schagerl M, editor. Soda Lakes of East Africa. Springer International Publishing Switzerland; 2016. pp. 345–364. https://doi.org/10.1007/978-3-319-28622-8_12 19. Oduor SO, Kotut K. Soda Lakes of the East African Rift System: The Past, the Present and the Future, Chapter 15. In: Schagerl M, editor. Soda Lakes of East Africa. Springer International Publishing Switzerland; 2016. pp. 365–374. https://doi.org/10.1007/978-3-319-28622-8_12 20. Drever JI. The Geochemistry of Natural Waters, Second Edition. Prentice-Hall, Englewood Cliffs, NJ; 1988. 21. Eugster HP, Hardie LA. Saline Lakes, Chapter 8. In: Lerman A, editor. Lakes, Chemistry, Geology, Physics. Springer-Verlag, New York; 1978. pp. 237–293. 22. Williams WD. Guidelines of lake management. Volume 6. Management of Inland Saline Waters. International Lake Environment Committee, United Nations Environment Programme; 1998. 23. Shvartsev SL. Geochemistry of fresh groundwater in the main landscape zones of the Earth. Geochemistry International. 2008; 46(13): 1285–1398. 24. Valyashko MG. Basic chemical types of natural waters and the conditions producing them. Records of the Academy USSR. 1955; 102: 315–318. (in Russian) 25. Valyashko MG. Regularities in the formation of potassium salts deposits. Moscow: MSU; 1962. (in Russian) 26. Zheng M, Jiayou T, Junying L, Fasheng Z. Chinese saline lakes. Hydrobiologia. 1993; 267: 23–36. 27. Boros E, Horváth Zs, Wolfram G, Vörös L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Annales de Limnologie, International Journal of Limnology. 2014; 50(1): 59–69. 28. Wolfram G, Déri L, Zech S, editors. Neusiedler See strategic study–Phase 1. (in Hungarian and German), Fertő tó Stratégiai tanulmány– 1. fázis. Tanulmány a Magyar–Osztrák Vízügyi Bizottság megbí-zásából. Bécs–Szombathely; 2014. 29. Williams WD. Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia. 1991; 210: 39–66. 30. Boros E, Jurecska L, Tatár E. Vörös L, Kolpakova M. Chemical composition and trophic state of shallow saline steppe lakes in central Asia (North Kazakhstan). Environmental Monitoring and Assessment. 2017; 189: 546, https://doi.org/10.1007/s10661-017-6242-6 PMID: 28990123 31. Gaskova OL, Strakhovenko VD, Ovdina EA. Composition of brines and mineral zoning of the bottom sediments of soda lakes in the Kulunda steppe (West Siberia). Russian geology and geophysics. 2017; 58(10): 1199–1210. https://doi.org/10.1016/j.rgg.2016.09.034 32. Williams WD, Aladin NV. The Aral Sea: recent limnological changes and their conservation significance. Aquatic Conservation: Marine and Freshwater Ecosystems. 1991; 1: 3–23. 33. Doi H, Kikuchi E, Mizota C, Satoh N, Shikano S, Yurlova N, et al. Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain. Hydrobiologia. 2004; 529: 225–235. 34. Gaskova OL, Kolpakova MN, Naymushina OS, Krivonogov SK. Geochemical processes controlling the water chemistry of saline lakes in the North Kazakhstan Region. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. 2017; 17(31): 325–333. 35. Gorlenko VM, Buryukhaev SP, Matyugina EB, Borzenko SV, Namsaraev Z., Bryantseva IA, et al. Microbial Communities of the Stratified Soda Lake Doroninskoe (Transbaikal Region). Microbiology. 2010; 79(3); 390–401. 36. Guseva NV, Kopylova YuG, Hvachevskaya AA, Smetanina IV. The chemical composition of the salt lakes of the North-Minusinsk depression, Khakassia. Bulletin of the Tomsk Polytechnic University. 2012; 321(1): 163–168. (in Russian) 37. Kolpakova MN, Borzenko SV, Isupov VP, Shatskaya SS, Shvartsev SL. Hydrochemistry and geochemical classification of salt lakes steppes of the Altai territory. Water chemistry and ecology. 2015; 1: 18–23. (In Russian) 38. Zamana LV, Borzenko SV. Hydrochemical regime of saline lakes in the Southeastern Transbaikalia. Geography and Natural Resources. 2010; 31(4): 370–376. 39. Kolpakova M.N, Gaskova O.L., Naymushina O.S., Krivonogov S.K. Ebeity Lake, Russia: chemical-organic and mineral composition of water and bottom sediments. Bulletin of the Tomsk Polytechnic University. Geo ssets Engineering. 2018. V. 329. 1. 111–123. 40. EPA (U.S. Environmental Protection Agency). "Method 6020. Inductively Coupled Plasma-Mass Spectrometry." Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods, EPA SW-846, Third Ed., Vol. I, Section A, Chapter 3 (Inorganic Analytes); 1994. 41. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. https://www.Rproject.org/. 42. Inman HF, Bradley EL Jr. The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Communications in Statistics—Theory and Methods. 1989; 18(10): 3851–3874. 43. Parkhurst DL, Appelo CAJ. Description of Input and Examples for PHREEQC Version 3. A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Denver, Colorado. 2013. 44. Pitzer KS. A thermodynamic model for aqueous solutions of liquid-like density. Reviews in Mineralogy. 1987; 17: 97–142. 45. Grant WD, Sorokin DY. Distribution and Diversity of Soda Lake Alkaliphiles, Chapter 2.2. In: Horikoshi K, editor. Extremophiles Handbook, Volume 1. Springer, Tokyo; 2011. pp. 28–54. 46. Sorokin DY, Berben T, Denise E, Overmars ML, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014; 18: 791–809. https://doi.org/10.1007/s00792-014-0670-9 PMID: 25156418 47. Zhdanova AN, Solotchina EP, Solotchin PA, Krivonogov SK, Danilenko IV. Reflection of Holocene climatic changes in mineralogy of bottom sediments from Yarkovsky Pool of Lake Chany (southern West Siberia). Russian Geology and Geophysics. 2017; 58(6): 692–701. 48. Eugster HP. Chapter 15 Lake Magadi, Kenya, and Its Precursors. Developments in Sedimentology. 1980; 28: 195–232. https://doi.org/https://doi.org/10.1016/S0070-4571(08)70239-5 49. Kolpakova MN, Gaskova OL. Major ions behavior during evaporation of different saline type water of Western Mongolian lakes (geochemical modelling). Hydrology Research. 2018; 49(1): 163–176. https://doi.org/10.2166/nh.2017.148 50. Linhoff BS, Bennett PC, Puntsag T, Gerel O. Geochemical evolution of uraniferous soda lakes in Eastern Mongolia. Environ Earth Sci. 2011; 62: 171–183. https://doi.org/10.1007/s12665-010-0512-8 51. Godfrey LV, Chan LH, Alonso RN, Lowenstein TK, Mcdonough WF, Houston J, et al. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Applied Geochemistry. 2013; 38: 92–102. http://dx.doi.org/10.1016/j.apgeochem.2013.09.002 52. Wetzel RG. Limnology, Lake and River Ecosystems. Third Edition. Academic Press An Imprint of Else-vier, San Diego, California, USA; 2001. 53. Namsaraev ZB, Gorlenko VM, Buryukhaev SP, Barkhutova DD, Dambaev VD, Dulov LE, et al. Water Regime and Variations in Hydrochemical Characteristics of the Soda Salt Lake Khilganta (Southeastern Transbaikalia). Water Resources. 2010; 37(4): 513–519.