Инд. авторы: Вологина Е.Г., Калугин И.А., Дарьин А.В., Астахов А.С., Штурм М., Черняева Г.П., Кулагина Н.В., Колесник А.Н.
Заглавие: Позднеголоценовое осадконакопление в активных геологических структурах чукотского моря
Библ. ссылка: Вологина Е.Г., Калугин И.А., Дарьин А.В., Астахов А.С., Штурм М., Черняева Г.П., Кулагина Н.В., Колесник А.Н. Позднеголоценовое осадконакопление в активных геологических структурах чукотского моря // Геодинамика и тектонофизика. - 2018. - Т.9. - № 1. - С.199-219. - EISSN 2078-502X.
Внешние системы: DOI: 10.5800/GT-2018-9-1-0345.; РИНЦ: 35369231;
Реферат: eng: The article presents the detailed analysis results considering bottom sediments from the Chukchi Sea. Two core samples, b16 and НС-8 were taken from the northern Herald Canyon 150 km northeast from NE Wrangel Island. Core b16 has been studied in more detail. According to the 210Pb measurements, the recent sedimentation rate amounts to 0.9 mm/y-1 at the sampling point. In the bottom layer of the core sample, the minimum concentrations of biogenic components (SiO2bio, Corg, Ntot, and Br) and the increased concentrations of cold-water diatom species Thalassiosira antarctica may result from low biological productivity during the Maunder Minimum. A correlation with recent global warming (11-22 years) is shown by the increased concentrations of SiO2bio, Corg, Ntot, and Br and the decreased values of magnetic susceptibility and X-ray density in the top layer (1-2 cm) of the same core sample. The results of our geochemical and diatom analysis support the available literature data and confirm that the Late Holocene sedimentation in the Chukchi Sea takes place in the zone wherein the water transits from the Pacific to the Arctic Ocean.
rus: Представлены результаты комплексного исследования вещественного состава донных осадков, вскрытых двумя кернами в северной части каньона Геральд Чукотского моря. Одна из полученных колонок была выбрана для более детального исследования. Скорость современного осадконакопления в точке отбора этого керна, измеренная по 210Pb, составляет 0.9 мм/год. Минимальные концентрации биогенных компонентов (SiO2биог., Сорг., Nобщ., Br) и увеличение содержаний холодноводного вида диатомей Thalassiosira antarctica в нижнем слое колонки, вероятно, объясняются низкой биологической продуктивностью во время минимума Маундера. Повышенные концентрации SiO2биог, Сорг, Nобщ, Br, пониженные значения магнитной восприимчивости и рентгеновской плотности в самом верхнем интервале разреза (до 1-2 см) соответствуют последним 11-22 годам глобального потепления климата. Результаты геохимического и диатомового анализов подтверждают имеющиеся в литературе данные о том, что позднеголоценовая седиментация в Чукотском море происходит в зоне транзита тихоокеанских вод в Северный Ледовитый океан.
Ключевые слова: пыльца; диатомеи; элементный состав; скорость современного осадконакопления; донные отложения; Чукотское море; climate reconstruction; pollen; diatoms; elemental composition; Recent sedimentation rate; bottom sediments; Chukchi Sea; реконструкция климата;
Издано: 2018
Физ. характеристика: с.199-219
Цитирование: 1. Alekseev M.N. (Ed.), 2002. Geology and Minerals of the Russian Shelf (Atlas). GEOS, Moscow, 425 p. 2. Appleby P.G., 2001. Chronostratigraphic techniques in recent sediments. In: W.M. Last, J.P. Smol (Eds.), Tracking environmental change using lake sediments. Vol. 1. Basin analysis, Coring, and Chronological Techniques. Dordrecht, Netherlands, Kluwer Academic Publishers, p. 171-203. https://doi.org/10.1007/0-306-47669-X_9. 3. Astakhov A.S., Bosin A.A., Kolesnik A.N., Obrezkova M.S., 2015a. Sediment geochemistry and diatom distribution in the Chukchi Sea: Application for bioproductivity and paleoceanography. Oceanography 28 (3), 190-201. https://doi.org/10.5670/oceanog.2015.65. 4. Astakhov A.S., Kalugin I.A., Aksentov K.I., Dar’in A.V., 2015b. Geochemical indicators of paleo-typhoons in shelf sediments. Geochemistry International 53 (4), 383-388. https://doi.org/10.1134/S0016702915040023. 5. Astakhov A.S., Vologina E.G., Dar’in A.V., Kalugin I.A., Plotnikov V.V., 2018. Reflection of global climate events of the last centuries in the chemical composition of bottom sediments of the Chukchi Sea. Meteorology and Hydrology (in press) 6. Bartington Instruments Limited, 1995. Preliminary Specification for the MS2E Sensor. Bartington Instruments Limited, Oxford, 2 p. 7. Baskaran M., Naidu A.S., 1995. 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochimica et Cosmochimica Acta 59 (21), 4435-4448. https://doi.org/10.1016/0016-7037(95)00248-X. 8. Bezrukov P.L. (Ed.), 1969. Pacific Ocean. Biology of the Pacific Ocean. Microflora and Microfauna in the Modern Sediments of the Pacific Ocean. Nauka, Moscow, 203 p. 9. Brohan P., Kennedy J.J., Harris I., Tett S.F., Jones P.D., 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research: Atmospheres 111 (D12), D12106. https://doi.org/10.1029/2005JD006548. 10. Crane K., 2005. Russian-American Long-term Census of the Arctic. Initial Expedition to the Bering and Chukchi Seas. Arctic Research of the United States, vol. 19, p. 73-76. 11. Dar’in A.V., Kalugin I.A., Rakshun Y.V., 2013. Scanning X-ray microanalysis of bottom sediments using synchrotron radiation from the BINP VEPP-3 storage ring. Bulletin of the Russian Academy of Sciences: Physics 77 (2), 182-184. https://doi.org/10.3103/S106287381302010X. 12. Dar’in A.V., Goldberg E.L., Kalugin I.A., Fedorin M.A., Zolotarev K.V., Maksimova N.V., 2003. The ratio of elastically and non-elastically scattered intensities on the example of synchrotron radiation - a climatically correlated paleo-signal in the historical layer (1860-1996) of the bottom sediments of Lake Teletskoe. Poverkhnost'. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya (Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques) (12), 53-55 13. Dar’in A.V., Rakshun Ya.V., 2013. Method of measurement during determination of the elemental composition of rock samples by X-ray fluores-cence analysis using synchrotron radiation from the VEPP-3 storage ring. Science bulletin of NSTU (2), 112-118 14. Fox A.L., Hughes E.A., Trocine R.P., Trefry J.H., Schonberg S.V., McTigue N.D., Lasorsa B.K., Konar B., Cooper L.W., 2014. Mercury in the northeastern Chukchi Sea: Distribution patterns in seawater and sediments and biomagnification in the benthic food web. Deep Sea Research Part II: Topical Studies in Oceanography 102, 56-67. https://doi.org/10.1016/j.dsr2.2013.07.012. 15. Grebmeier J.M., Cooper L.W., Feder H.M., Sirenko B.I., 2006. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Progress in Oceanography 71 (2-4), 331-361. https://doi.org/10.1016/j.pocean.2006.10.001. 16. Gusev E.A., Anikina N.Y., Derevyanko L.G., Klyuvitkina T.S., Polyak L.V., Polyakova E.I., Rekant P.V., Stepanova A.Y., 2014. Environmental evolution of the southern Chukchi Sea in the Holocene. Oceanology 54 (4), 465-477. https://doi.org/10.1134/S0001437014030011. 17. Kholodov V.N., Nedumov R.I., 1991. On the geochemical criteria for the occurrence of hydrogen sulfide contamination in the waters of ancient reservoirs. Izvestiya AN SSSR, Geological Series (12), 74-82 18. Kim S.Y., Polyak L., Delusina I., 2017. Terrestrial and aquatic palynomorphs in Holocene sediments from the Chukchi-Alaskan margin, western Arctic Ocean: Implications for the history of marine circulation and climatic environments. The Holocene 27 (7), 976-986. https://doi.org/10.1177/0959683616678459. 19. Kulbe T., Anselmetti F., Cantonati M., Sturm M., 2005. Environmental history of Lago di Tovel, Trento, Italy, revealed by sediment cores and 3.5 kHz seismic mapping. Journal of Paleolimnology 34 (3), 325-337. https://doi.org/10.1007/s10933-005-5022-4. 20. Levi K.G., Sherman S.I., San’kov V.A., 2009. Recent geodynamics of Asia: Map, principles of its compilation, and geodynamic analysis. Geotectonics 43 (2), 152-165. https://doi.org/10.1134/S001685210902006X. 21. Levitan M.A., Lavrushin Yu.A., Stein R., 2007. Essays on the History of Sedimentation in the Arctic Ocean and the Subarctic Seas During the Last 130 Thousand Years. GEOS, Moscow, 404 p. 22. Ma H., Zeng S., Chen L., He J., Yin M., Zeng X., Zeng W., 2008. History of heavy metals recorded in the sediments of the Chukchi Sea. Journal of Oceanography in Taiwan Strait 27 (1), 15-20. 23. Makarova I.V., 1988. Diatoms in the Seas of the USSR: Thalassiosira Cl. Nauka, Leningrad, 117 p. 24. Matveeva T., Savvichev A.S., Semenova A., Logvina E., Kolesnik A.N., Bosin A.A., 2015. Source, origin, and spatial distribution of shallow sediment methane in the Chukchi Sea. Oceanography 28 (3), 202-217. https://doi.org/10.5670/oceanog.2015.66. 25. Mayer L.M., Schick L.L., Allison M.A., Ruttenberg K.C., Bentley S.J., 2007. Marine vs. terrigenous organic matter in Louisiana coastal sediments: The uses of bromine: organic carbon ratios. Marine Chemistry 107 (2), 244-254. https://doi.org/10.1016/j.marchem.2007.07.007. 26. National Snow and Ice Data Center, 2017. Available from: http://nsidc.org/arcticseaicenews/ (last accessed December 15, 2017). 27. Obrezkova M.S., Kolesnik A.N., Semiletov I.P., 2014. The diatom distribution in the surface sediments of the Eastern Arctic seas of Russia. Russian Journal of Marine Biology 40 (6), 465-472. https://doi.org/10.1134/S1063074014060170. 28. Ogorodnikov V.I., Rusanov V.P., 1978. Conditions for accumulation and distribution of amorphous silica in bottom sediments of the Chukchi Sea. Okeanologiya (Oceanology) 18 (6), 1049-1052 29. Ohlendorf C., Sturm M., 2008. A modified method for biogenic silica determination. Journal of Paleolimnology 39 (1), 137-142. https://doi.org/10.1007/s10933-007-9100-7. 30. Petrovsky V.V., 1978. Geographical links of the flora of Wrangel Island (in connection with the problem of the Beringian land). Botanicheskii Zhurnal (Botanical Journal) 63 (5), 637-648 31. Polyak B.G., Lavrushin V.Y., Cheshko A.L., Prasolov E.M., Kamensky I.L., 2010. Recent tectonomagmatic reactivation of the Kolyuchino-Mechigmen zone of the Chukchi Peninsula from data on the composition of gases in hydrothermal springs. Geotectonics 44 (6), 529-540. https://doi.org/10.1134/S0016852110060063. 32. Proshkina-Lavrenko A.I. (Ed.), 1974. Diatoms of the USSR. Vol. 1. Nauka, Leningrad, 403 p. 33. Pushkar V.S., Cherepanova M.V., 2001. Diatoms of the Pliocene and Anthropogen of the Northern Pacific (Stratigraphy and Paleoecology). Dal'nauka, Vladivostok, 226 p. 34. Ren J., Gersonde R., Esper O., Sancetta C., 2014. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables. Palaeogeography, Palaeoclimatology, Palaeoecology 402, 81-103. https://doi.org/10.1016/j.palaeo.2014.03.008. 35. Rudaya N.A., 2010. Palynological Analysis. Teaching Manual. Novosibirsk State University, Institute of Archeology and Ethnography of SB RAS, Novosibirsk, 48 p. 36. Rukhin L.B., 1969. Fundamentals of Lithology. The Concept of Sedimentary Rocks. Nedra, Leningrad, 703 p. 37. Shipilov E.V., 1989. About the graben rift system of the Chukchi Sea. Izvestiya AN SSSR, Geological Series (10), 96-107 38. Stone R.S., 1997. Variations in western Arctic temperatures in response to cloud radiative and synoptic-scale influences. Journal of Geophysical Research: Atmospheres 102 (D18), 21769-21776. https://doi.org/10.1029/97JD01840. 39. Timofeev V.Yu., Ardyukov D.G., Solov'ev V.M., Shibaev S.V., Petrov A.F., Gornov P.Yu., Shestakov N.V., Boiko E.V., Timofeev A.V., 2012. Plate boundaries in the Far East region of Russia (from GPS measurement, seismic-prospecting, and seismological data). Russian Geology and Geophysics 53 (4), 376-391. https://doi.org/10.1016/j.rgg.2012.03.002. 40. Tsoy I.B., Obrezkova M.S., Aksentov K.I., Kolesnik A.N., Panov V.S., 2017. Late Holocene environmental changes in the Southwestern Chukchi Sea inferred from diatom analysis. Russian Journal of Marine Biology 43 (4), 276-285. https://doi.org/10.1134/S1063074017040113. 41. Vetrov A.A., Semiletov I.P., Dudarev O.V., Peresypkin V.I., Charkin A.N., 2008. Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea. Geochemistry International 46 (2), 156-167. https://doi.org/10.1134/S0016702908020055. 42. Vologina E.G., Sturm M., Kalugin I.A., Darin A.V., Astakhov A.S., Chernyaeva G.P., Kolesnik A.N., Bosin A.A., 2016. Reconstruction of the conditions of Late Holocene sedimentation by integrated analysis of a core of the bottom sediments from the Chukchi Sea. Doklady Earth Sciences 469 (2), 841-845. https://doi.org/10.1134/S1028334X16080183. 43. Wilson R., D'Arrigo R., Buckley B., Büntgen U., Esper J., Frank D., Luckman B., Payette S., Vose R., Youngblut D., 2007. A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. Journal of Geophysical Research: Atmospheres 112 (D17), D17103. https://doi.org/10.1029/2006JD008318. 44. Yashin D.S., 2000. Holocene sedimentogenesis in the Arctic seas of Russia. In: Geological and geophysical characteristics of the lithosphere in the Arctic Region. Issue 3. VNIIokeangeologiya, St. Petersburg, p. 57-67 45. Yudovich Ya.E., Ketris M.P., 1988. Geochemistry of Black Shales. Nauka, Leningrad, 272 p. 46. Zhuze A.P. (Ed.), 1977. Atlas of Microorganisms in the Bottom Sediments of the Oceans. Nauka, Moscow, 196 p. 47. Zhuze A.P. (Ed.), 1978. Marine Micropaleontology (Diatoms, Radiolarians, Silicoflagillates, Foraminifers and Calcareous Nannoplankton). Nauka, Moscow, 255 p. 48. Zhuze A.P., Mukhina V.V., Kozlova O.G., 1969. Diatoms and silicoflagellates in the surface layer of the sediments in the Pacific Ocean. In: P.L. Bezrukov (Ed.), Pacific Ocean. Biology of the Pacific Ocean. Microflora and microfauna in the modern sediments of the Pacific Ocean. Nauka, Moscow, p. 7-47