Инд. авторы: Mikhailenko D.S., Korsakov A.V., Rashchenko S.V., Seryotkin Y.V., Belakovskiy D.I., Golovin A.V.
Заглавие: Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites
Библ. ссылка: Mikhailenko D.S., Korsakov A.V., Rashchenko S.V., Seryotkin Y.V., Belakovskiy D.I., Golovin A.V. Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites // American Mineralogist. - 2018. - Vol.103. - Iss. 9. - P.1435-1444. - ISSN 0003-004X. - EISSN 1945-3027.
Внешние системы: DOI: 10.2138/am-2018-6363; РИНЦ: 35734404; SCOPUS: 2-s2.0-85053328558; WoS: 000443196900006;
Реферат: eng: Kuliginite is a new iron-magnesium hydroxychloride mineral with the ideal formula Fe3Mg(OH)(6)Cl-2 from the Udachnaya East kimberlite, Yakutia, Russia. It occurs as green prismatic-bipyramidal crystals (0.2-0.5 mm) and fills cavities and veins in several units of kimberlites together with iowaite, gypsum, calcite, halite, barite, and celestine. It is trigonal, with R (3) over bar space group. Kuliginite has imperfect cleavage on {10 (1) over bar1}. The spinel-like crystal structure of kuliginite is also typical for several copper minerals of the atacamite group with common formula Cu3M(OH)(6)Cl-2; kuliginite can be regarded as a Fe2+ analog of tondiite [Cu3Mg(OH)(6)Cl-2]. The occurrence of the kuliginite + iowaite + gypsum assemblage has implications for the interpretation of low-temperature (below 100 degrees C) hydrothermal processes and alteration of kimberlite by hydrothermal fluids/brines, as well as for transport of metals in Cl-bearing solutions. This secondary hydrothermal mineral assemblage formed much later than the kimberlite groundmass minerals. Kuliginite contains inclusions of iowaite indicating their simultaneous crystallization.
Ключевые слова: AKAGANEITE; MANTLE; HERBERTSMITHITE; MELT INCLUSIONS; MAGMA EVOLUTION; ALKALI CHLORIDES; EAST KIMBERLITE; UNALTERED KIMBERLITES; Dynamics of Magmatic Processes; hydroxychloride; atacamite group; kimberlite; crystal structure; kuliginite; New mineral; CRYSTAL-STRUCTURE; CARBONATES;
Издано: 2018
Физ. характеристика: с.1435-1444
Цитирование: 1. Alekseev, S.V. (2009) Permafrost-Groundwater Systems of the Yakutian Diamond Province. Akademicheskoe Izdatelstvo "Geo", Novosibirsk. 2. Alexeev, S.V., Alexeeva, L.P., Borisov, V.N., Shouakar-Stash, O., Frape, S.K., Chabaux, F., and Kononov, A.M. (2007) Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform. Russian Geology and Geophysics, 48, 225-236. 3. Aullon, G., Bellamy, D., Orpen, A.G., Brammer, L., Bruton, F., and Eric, A. (1998) Metal-bound chlorine often accepts hydrogen bonds. Chemical Communications. Royal Society of Chemistry, 6, 653-654. 4. Braithwaite, R.S.W., Dunn, P.J., Pritchard, R.G., and Parr, W.H. (1994) Iowaite, a re-investigation. Mineralogical Magazine, 58, 77-86. 5. Braithwaite, R., Mereiter, K., Paar, W., and Clark, A. (2011) Herbertsmithite, Cu3Zn (OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527-539. 6. Brakhfogel, F.F. (1984) Geological aspects of kimberlite magmatism in the northeastern Siberian platform. Siberian Branch of Academy of Sciences of USSR, 128, 130-135. 7. Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197 8. Cawthorn, R.G., Luvhimbe, C., and Slabbert, M. (2009) Suspected presence of hibbingite in olivine pyroxenite adjacent to the UG2 chromitite, Bushveld Complex, South Africa. Canadian Mineralogist, 47, 1075-1085. 9. Clissold, M.E., Leverett, P., Williams, P.A., Hibbs, D.E., and Nickel, E.H. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widg-iemooltha, Western Australia. Canadian Mineralogist, 45, 317-320. 10. Crichton, W.A., and Müller, H. (2017) Centennialite, CaCu3(OH)6Cl2·nH2O, n = 0.7, a new kapellasite-like species, and a reassessment of calumetite. Mineralogical Magazine, 81, 1105-1124. 11. Davis, G.L., Sobolev, N.V., and Kharkiv, A.D. (1980) New data on the age of Yakutian kimberlites obtained by uranium-lead study of zircons. Doklady Akademii Nauk SSSR, 254, 175-179, (in Russian). 12. d'Eyrames, E., Thomassot, E., Kitayama, Y., Golovin, A., Korsakov, A., and Ionov, D. (2017) A mantle origin for sulfates in the unusual salty Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates. Bulletin de la Société géologique de France, 188, 1-8. 13. Drozdov, A.V., Egorov, K.N., Gotovtsev, S.P., and Klimovsky, I.V. (1989) Hydro-geological structure and hydrochemical zonation of the Udachnaya kimberlite pipe. In Combined Permafrost and Hydrogeological Studies, p. 146-155. Institute of Permafrost Siberian Branch of Academy of Sciences, Yakutsk. 14. Foord, E.E., and Mills, B.A. (1978) Biaxiality in 'isometric' and 'dimetric' crystals. American Mineralogist, 63, 316-325. 15. Frost, R., Bouzaid, J., Musumeci, A., Kloprogge, J., and Martens, W. (2006) Thermal decomposition of the synthetic hydrotalcite iowaite. Journal of Thermal Analysis and Calorimetry, 86, 437-441. 16. Frost, R.L., Adebajo, M.O., and Erickson, K.L. (2005) Raman spectroscopy of synthetic and natural iowaite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 613-620. 17. Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., Kolesov, B.A., and Sobolev, N.V. (2003) Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Doklady Earth Sciences, 388, 93-96. 18. Golovin, A.V., Sharygin, V.V., and Pokhilenko, N.P. (2007) Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: Some aspects of kimberlite magma evolution during late crystallization stages. Petrology, 15, 168-183. 19. Golovin, A.V., Sharygin, I.S., and Korsakov, A.V. (2017) Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chemical Geology, 455, 357-375. 20. Hålenius, U., Hatert, F., Pasero, M., and Mills, S. (2016) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 33. New minerals and nomenclature modifications approved in 2016. Mineralogical Magazine, 80, 1135-1144. 21. Hamilton, W.C. (1965) Significance tests on the crystallographic R factor. Acta Crystallographica, 18, 502-510. 22. Hawthorne, F. (1985) Refinement of the crystal structure of botallackite. Miner-alogical Magazine, 49, 87-91. 23. Kahr, B., and McBride, J.M. (1992) Optically anomalous crystals. Angewandte Chemie International Edition, 31, 1-26. 24. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., and Sobolev, N.V. (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology, 32, 845-848. 25. Kamenetsky, V.S., Sharygin, V.V., Kamenetsky, M.B., and Golovin, A.V. (2006) Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochemistry International, 44, 935-940. 26. Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Faure, K., and Golovin, A.V. (2007a) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geology, 237, 384-400. 27. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V., and Kuzmin, D.V. (2007b) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. Journal of Petrology, 49, 823-839. 28. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F., and Mernagh, T.P. (2009) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 112, 334-346. 29. Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., Sharygin, V.V., and Maas, R. (2012) Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos, 152, 173-186. 30. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., and Weiss, Y. (2014) Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 139, 145-167. 31. Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M.D., Dini, M., and Donoso, A.M. (2013a) Paratacamite-(Mg), Cu3(Mg, Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 3113-3124. 32. Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M., and Donoso, A. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77, 3047-3054. 33. Kharkiv, A.D., Zinchuk, N.N., and Kryuchkov, A.I. (1998) Primary Diamond Deposits of the World, 555 p. Nedra, Moscow. 34. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., and Spetsius, Z.V. (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Russian Geology and Geophysics, 38, 97-105. 35. Kitayama, Y., Thomassot, E., Galy, A., Golovin, A., Korsakov, A., d'Eyrames, E., Assayag, N., Bouden, N., and Ionov, D. (2017) Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): A record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chemical Geology, 455, 315-330. 36. Klimchouk, A. (1996) The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25, 2-16. 37. Kopylova, M.G., Gaudet, M., Kostrovitsky, S.I., Polozov, A.G., and Yakovlev, D.A. (2016) Origin of salts and alkali carbonates in the Udachnaya East kimberlite: Insights from petrography of kimberlite phases and their carbonate and evapo-rite xenoliths. Journal of Volcanology and Geothermal Research, 327, 116-134. 38. Kozlov, I., and Levshov, P. (1962) Amakinite, a new mineral of the brucitepyro-chroite group. American Mineralogist, 47, 1218. 39. Krause, W., Bernhardt, H.-J., Braithwaite, R.S.W., Kolitsch, U., and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329-340. 40. Libowitzky, E. (1999) Correlation of OH stretching frequencies and OH···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059. 41. Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., and Sobolev, N.V. (2005) Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology, 33, 549-552. 42. Malcherek, T., and Schlüter, J. (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallographica, B65, 334-341. 43. Malcherek, T., Bindi, L., Dini, M., Ghiara, M., Donoso, A.M., Nestola, F., Rossi, M., and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583-590. 44. Marshintsev, V.K., Migalkin, K.N., Nikolaev, N.S., and Barashkov, I.P. (1976) Unchanged kimberlite of Udachnaya-Vostochnaya pipe. Doklady Akademii Nauk SSSR, 231, 961-964. 45. Mascal, M. (1997) A statistical analysis of halide H-A (A= OR, NR 2, N+ R 3) hydrogen bonding interactions in the solid state. Journal of the Chemical Society, Perkin Transactions, 2, 10, 1999-2001. 46. Mernagh, T.P., Kamenetsky, V.S., and Kamenetsky, M.B. (2011) A Raman mi-croprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 80, 82-87. 47. Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276. 48. Nishio-Hamane, D., Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N., Okuma, R., Kampf, A., and Minakawa, T. (2017) Iyoite, MnCuCl(OH)3 and misakiite, Cu3Mn(OH)6Cl2: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan. Mineralogical Magazine, 81, 485-498. 49. Palatinus, L., and Chapuis, G. (2007) SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786-790. 50. Parise, J.B., and Hyde, B.G. (1986) The structure of atacamite and its relationship to spinel. Acta Crystallographica, C42, 1277-1280. 51. Petricek, V., Dusek, M., and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie: Crystalline Materials, 229, 345-352. 52. Post, J.E., Heaney, P.J., Dreele, R.B.V., and Hanson, J.C. (2003) Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. American Mineralogist, 88, 782-788. 53. Poty, B., Holland, H.D., and Borcsik, M. (1972) Solution-mineral equilibria in the system MgO-SiO2-H2O-MgCl2 at 500°C and 1 kbar. Geochimica et Cosmo-chimica Acta, 36, 1101-1113. 54. Reguer, S., Neff, D., Bellot-Gurlet, L., and Dillmann, P. (2007) Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products. Journal of Raman Spectroscopy, 38, 389-397. 55. Rémazeilles, C., and Refait, P. (2007) On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corrosion Science, 49, 844-857. 56. Rogers, A.F. (1924) Kempite, a new manganese mineral from California. American Journal of Science, 44, 145-150. 57. Rucklidge, J.C., and Patterson, G.C. (1977) The role of chlorine in serpentinization. Contributions to Mineralogy and Petrology, 65, 39-44. 58. Saini-Eidukat, B., Kucha, H., and Keppler, H. (1994) Hibbingite, Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals. American Mineralogist, 79, 555-561. 59. Sciberras, M.J., Leverett, P., Williams, P.A., Hibbs, D.E., Downes, P.J., Welch, M.D., and Kampf, A.R. (2013) Paratacamite-(Ni), Cu3(Ni, Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Australian Journal of Mineralogy, 17, 39-44. 60. Shatskiy, A., Litasov, K.D., Sharygin, I.S., and Ohtani, E. (2017) Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Research, 45, 208-227. 61. Shtukenberg, A., and Punin, Y.O. (2007) Stress induced optical anomalies. In A. Shtukenberg and Y. Shtukenberg, and Kahr, Eds., Optically Anomalous Crystal, p. 35-94. Springer. 62. Smith, B.H.S., Nowicki, T.E., Russell, J.K., Webb, K.J., Mitchell, R.H., Hetman, C.M., Harder, M., Skinner, E., and Robey, J.A. (2013) Kimberlite terminology and classification. In D.G. Pearson and H.S. Grütter, Eds., Proceedings of 10th International Kimberlite Conference, p. 1-17. Springer. 63. Ståhl, K., Nielsen, K., Jiang, J., Lebech, B., Hanson, J.C., Norby, P., and van Lanschot, J. (2003) On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corrosion Science, 45, 2563-2575. 64. Steiner, T. (1998) Hydrogen-bond distances to halide ions in organic and organo-metallic crystal structures: up-to-date database study. Acta Crystallographica, B54, 456-463. 65. Welch, M.D., Sciberras, M.J., Williams, P.A., Leverett, P., Schlüter, J., and Mal-cherek, T. (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals, 41, 33-48. 66. Yudin, D.S., Tomilenko, A.A., Alifirova, T.A., Travin, A.V., Murzintsev, N.G., and Pokhilenko, N.P. (2011) Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe). Doklady Earth Sciences, 469, 728-731.