Инд. авторы: Murzin V., Chudnenko K., Palyanova G., Kissin A., Varlamov D.
Заглавие: Physicochemical Model of Formation of Gold-Bearing Magnetite-Chlorite-Carbonate Rocks at the Karabash Ultramafic Massif (Southern Urals, Russia)
Библ. ссылка: Murzin V., Chudnenko K., Palyanova G., Kissin A., Varlamov D. Physicochemical Model of Formation of Gold-Bearing Magnetite-Chlorite-Carbonate Rocks at the Karabash Ultramafic Massif (Southern Urals, Russia) // MINERALS. - 2018. - Vol.8. - Iss. 7. - Art.306. - ISSN 2075-163X.
Внешние системы: DOI: 10.3390/min8070306; РИНЦ: 35738475; SCOPUS: 2-s2.0-85050687982; WoS: 000440860400044;
Реферат: eng: We present a physicochemical model for the formation of magnetite-chlorite-carbonate rocks with copper gold in the Karabash ultramafic massif in the Southern Urals, Russia. The model was constructed based on the formation geotectonics of the Karabash massif, features of spatial distribution of metasomatically altered rocks in their central part, geochemical characteristics and mineral composition of altered ultramafic rocks, data on the pressure and temperature conditions of formation, and composition of the ore-forming fluids. Magnetite-chlorite-carbonate rocks were formed by the hydrothermal filling of the free space, whereas chloritolites were formed by the metasomatism of the serpentinites. As the source of the petrogenic and ore components, we considered rocks (serpentinites, gabbro, and limestones), deep magmatogenic fluids, probably mixed with metamorphogenic fluids released during dehydration and deserpentinization of rocks in the lower crust, and meteoric waters. The model supports the involvement of sodium chloride- carbon dioxide fluids extracting ore components (Au, Ag, and Cu) from deep-seated rocks and characterized by the ratio of ore elements corresponding to Clarke values in ultramafic rocks. The model calculations show that copper gold can also be deposited during serpentinization of deep-seated olivine-rich rocks and ore fluids raised by the tectonic flow to a higher hypsometric level. The results of our research allow predicting copper gold-rich ore occurrences in ultramafic massifs.
Ключевые слова: ASSOCIATION; DEPOSITS; HG SOLID-SOLUTIONS; copper gold; Au-Cu mineralization; chloritolites; magnetite-chlorite-carbonate rocks; Karabash ultramafic massif; thermodynamic modeling; TRANSPORT;
Издано: 2018
Физ. характеристика: 306
Цитирование: 1. Puchkov, V.N. General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why. Ore Geol. Rev. 2017, 85, 4–29. [CrossRef] 2. Snachyov, A.V.; Kuznetsov, N.S.; Snachyov, V.I. The Chernoe ozero gold occurrence in carbonaceous deposits of the ophiolite association: The first object of such a type in the Soutern Urals. Dokl. Earth Sci. 2011, 439, 906–908. [CrossRef] 3. Novgorodova, M.I.; Tsepin, A.I.; Kudrevich, I.M.; Vyal’sov, L.N. New data on crystal chemistry and properties of natural intermetallic compounds in the copper-gold system. Zap. Vses. Miner. Obsch. 1977, 106, 540–552. (In Russian) 4. Spiridonov, E.M.; Pletniov, P.A. Zolotaya Gora Deposit of Cupriferous Gold (About “Golden-Rodingite” Formation); Scientific World: Moskow, Russia, 2002; p. 220. ISBN 5-89176-169-6. (In Russian) 5. Murzin, V.V.; Varlamov, D.A.; Ronkin, Y.L.; Shanina, S.N. Origin of Au_Bearing Rodingite in the Karabash Massif of Alpine_Type Ultramafic Rocks in the Southern Urals. Geol. Ore Depos. 2013, 55, 278–297. [CrossRef] 6. Murzin, V.V.; Chudnenko, K.V.; Palyanova, G.A.; Varlamov, D.A.; Naumov, E.A.; Pirajno, F. Physicochemical model of formation of Cu-Ag-Au-Hg solid solutions and intermetallic alloys in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia). Ore Geol. Rev. 2018, 93, 81–97. [CrossRef] 7. Murzin, V.V.; Popov, V.A.; Erokhin, Y.V.; Rakhov, E.V. Mineralogic and Geochemical Features of Gold-Rare-Metal-Rare-Earth Mineralization of Chlorite-Carbonate Rocks from the KARABASH Massif of Ultrabasic Rocks (Southern Urals). In Ural’skii Mineralogicheskii Sbornik; IMin UrO, RAS: Miass, Russia, 2005; Volume 13, pp. 123–145. (In Russian) 8. Murzin, V.V.; Varlamov, D.A.; Palyanova, G.A. Conditions of formation of gold-bearing magnetite–chlorite–carbonate rocks of the Karabash ultrabasic massif (South Urals). Russ. Geol. Geophys. 2017, 58, 803–814. [CrossRef] 9. Murzin, V.V.; Shanina, S.N. Physic-chemical conditions of gold-bearing magnetite-chlorite-carbonate rocks’ formation of the Karabash ultramafic massif (the Southern Urals). Litosphera 2017, 17, 110–117. [CrossRef] 10. Lozhechkin, M.P. The Karabash Deposit of Cupriferous Gold; Trudy UFAN SSSR: Sverdlovsk, Russia, 1935; pp. 35–44. (In Russian) 11. Borisenko, A.S. Study of the salt composition of solutions in gasliquid inclusions in minerals by the cryometric method. Sov. Geol. Geophys. 1977, 18, 11–19. 12. Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications, 2nd ed.; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Tech: Blacksburg, VA, USA, 1994; pp. 117–130. 13. Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 1–644. 14. Kisin, A.Y.; Koroteev, V.A. Block Folding and Oreogenesis; IGG UrB RAS: Ekaterinburg, Russia, 2017; p. 349. (In Russian) 15. Kissin, Y.; Murzin, V.V.; Pritchin, M.E. Tectonic position of the gold mineralization of the Karabash Mountain (Southern Urals): Examination of small structural forms. Litosphera 2016, 16, 79–91. (In Russian) 16. Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A. Modeling chemical mass-transfer in geochemical processes: Thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 1997, 297, 767–806. [CrossRef] 17. Chudnenko, K.V. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications; Academic Publishing House Geo: Novosibirsk, Russia, 2010; 287p, ISBN 978-5-904682-18-7. (In Russian) 18. Chudnenko, K.V.; Palyanova, G.A. Thermodynamic modeling of native formation Cu-Ag-Au-Hg solid solutions. Appl. Geochem. 2016, 66, 88–100. [CrossRef] 19. Zhuravkova, T.V.; Palyanova, G.A.; Chudnenko, K.V.; Kravtsova, R.G.; Prokopyev, I.R.; Makshakov, A.S.; Borisenko, A.S. Physicochemical models of formation of gold–silver ore mineralization at the Rogovik deposit (Northeastern Russia). Ore Geol. Rev. 2017, 91, 1–20. [CrossRef] 20. Tanger, J.C.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for standard partial molal properties of ions and electrolytes. Am. J. Sci. 1988, 288, 19–98. [CrossRef] 21. Lee, B.I.; Kesler, M.G. Generalized thermodynamic correlation based on three parameter corresponding states. AIChE J. 1975, 21, 510–527. [CrossRef] 22. Walas, S.M. Phase Equilibria in Chemical Engineering; Butterworth Publishers: Boston, MA, USA, 1985; 671p, ISBN 978-0-409-95162-2. 23. Breedveld, G.J.F.; Prausnitz, J.M. Thermodynamic properties of supercritical fluids and their mixtures at very high pressure. AIChE J. 1973, 19, 783–796. [CrossRef] 24. Garuti, G.; Fershtater, G.B.; Bea, F.; Montero, P.; Pushkarev, E.V.; Zaccarini, F. Platinum Group Elements As a Pertrological Indicators in Mafic-Ultramafic Complexes of the Central and Southern Urals: Preliminary Results. Tectonophysics 1997, 276, 181–194. [CrossRef] 25. Grigoriev, N.A. Chemical Element Distribution in the Upper Continental Crust; UB RAS: Ekaterinburg, Russia, 2009; p. 382. (In Russian) 26. Karpov, I.K.; Chudnenko, K.V.; Kravtsova, R.G.; Bychinskiy, V.A. Simulation modeling of physical and chemical processes of dissolution, transport and deposition of gold in epithermal gold-silver deposits of the North-East Russia. Russ. Geol. Geophys. 2001, 3, 393–408. 27. Gritsuk, N.A. Petrogeochemical Features and Pre Potential of the Talov Massif of Gabbro-Hyperbasic Rocks. Ph.D. Thesis, Moscow State University, Russia, 2003; p. 148. (In Russian) 28. Berzon, R.O. Gold Resource Potential of Ultramafics; VIEMS: Moscow, Russia, 1983; p. 47. (In Russian) 29. Zotov, A.; Kuzmin, N.; Reukov, V.; Tagirov, B. Stability of AuCl2 from 25 to 1000°C at pressures to 5000 bar, and consequences for hydrothermal gold mobilization. Minerals 2018, 8, 286. [CrossRef] 30. Seward, T.M.; Williams-Jones, A.E.; Migdisov, A.A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In Treatise on Geochemistry, 2nd ed.; Turekian, K., Holland, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 13, pp. 29–57. 31. Belogub, E.V.; Melekestseva, I.Y.; Novoselov, K.A.; Zabotina, M.V.; Tret’yakov, G.A.; Zaykov, V.V.; Yuminov, A.M. Listvenite-related gold deposits of the South Urals (Russia): A review. Ore Geol. Rev. 2017, 85, 247–270. [CrossRef] 32. Murzin, V.V.; Varlamov, D.A.; Shanina, S.N. New Data on the Gold–Antigorite Association of the Urals. Dokl. Earth Sci. 2007, 417A, 1436–1439. [CrossRef]