Цитирование: | 1. Andreeva, I.A., Naumov, V.B., Kovalenko, V.I., Kononkova, N.N., Fluoride-sulfate and chloride-sulfate salt melts of the carbonatite-bearing complex Musgugai-Khuduk, southern Mongolia. Petrology 6:3 (1998), 284–292.
2. Anselment, B., Die Dinamik der Phasenumwandlung vom Rutil in denCaCl2-Typ am Beispiel de CaBr2 und zur Polymorphie des CaCl2: Thesis. 1986, Universität Karlsruhe.
3. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nicois, M.C., Handbook of Mineralogy, Vol. III. Halides, Hydroxides. 1997, Oxides. Mineral Data Publishing, Tucson, 628.
4. Audetat, A., Pettke, T., Heinrich, C.A., Bodnar, R.J., Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103:5 (2008), 877–908, 10.2113/gsecongeo.103.5.877.
5. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., Steele-MacInnis, M., Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, 2014, Elsevier, 119–142.
6. Burgess, S.D., Bowring, S.A., High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv., 1(7), 2015, e1500470, 10.1126/sciadv.1500470.
7. Burke, E.A., A mass discreditation of GQN minerals. Can. Mineral. 44:6 (2006), 1557–1560, 10.2113/gscanmin.44.6.1557.
8. Ceperley, D.M., Alder, B.J., Ground state of the Electron gas by a stochastic method. Phys. Rev. Lett. 45:7 (1980), 566–569, 10.1103/PhysRevLett.45.566.
9. Clark, R.P., Reinhardt, F.W., Phase diagrams for the binary systems CaCl2-KCl and CaCl2-CaCrO4. Thermochim. Acta 12:3 (1975), 309–314, 10.1016/0040-6031(75)85044-1.
10. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., First principles methods using CASTEP. Z. Kristallogr., 220(5/6), 2005, 191, 10.1524/zkri.220.5.567.65075.
11. Clocchiatti, R., Massare, D., Jehanno, C., Origine hydrothermale des olivines gemmes de l'ile de Zabardad (St. Johns) Mer Rouge, par l'etude de leurs inclusions. Fortschr. Mineral. 104 (1981), 354–360.
12. D'Eyrames, E., Thomassot, E., Kitayama, Y., Golovin, A., Korsakov, A., Ionov, D., Danelian, T., Jolivet, M., A mantle origin for sulfates in the unusual “salty” Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates. Bull. Soc. Geol. Fr., 188(1–2), 2017, 6, 10.1051/bsgf/2017007.
13. Frezzotti, M.L., Tecce, F., Casagli, A., Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 112 (2012), 1–20, 10.1016/j.gexplo.2011.09.009.
14. Giuliani, G., Dubessy, J., Ohnenstetter, D., Banks, D., Branquet, Y., Feneyrol, J., Fallick, A.E., Martelat, J.-E., The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review. Mineral. Deposita 53:1 (2018), 1–20, 10.1007/s00126-017-0738-4.
15. Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanas'ev, V.P., Pokhilenko, N.P., Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45:4 (2014), 305–313, 10.1002/jrs.4457.
16. Grishina, S., Dubessy, J., Kontorovich, A., Pironon, J., Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia). Eur. J. Mineral. 4:5 (1992), 1187–1202, 10.1127/ejm/4/5/1187.
17. Grishina, S.N., Polozov, A.G., Mazurov, M.P., Goryainov, S.V., Genesis of chloride-carbonate segregations of the Udachnaya-East pipe. Dokl. Earth Sci. 458:1 (2014), 1129–1131, 10.1134/S1028334X14090141.
18. Grishina, S.N., Polozov, A.G., Smirnov, S.Z., Mazurov, M.P., Goryainov, S.V., Inclusions in chloride xenoliths from the Udachnaya-East kimberlite. Geochem. Int. 52:7 (2014), 595–603, 10.1134/S0016702914050048.
19. Hurai, V., Huraiová M., Slobodník, M., Thomas, R., Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes / Vratislav Hurai, Monika Huraiová Marek Slobodník, Rainer Thomas. 2015, Elsevier, Amsterdam.
20. Kamenetsky, V.S., van Achterbergh, E., Ryan, C.G., Naumov, V.B., Mernagh, T.P., Davidson, P., Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz. Geology, 30(5), 2002, 459, 10.1130/0091-7613(2002)030<0459:ECHOGD>2.0.CO;2.
21. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167, 10.1016/j.earscirev.2014.09.004.
22. Kitayama, Y., Thomassot, E., Galy, Α., Golovin, A., Korsakov, A., D'Eyrames, E., Assayag, N., Bouden, N., Ionov, D., Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): a record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem. Geol. 455 (2017), 315–330, 10.1016/j.chemgeo.2016.10.037.
23. Koděra, P., Takács, Á., Racek, M., Šimko, F., Luptáková J., Váczi, T., Antal, P., Javorieite, KFeCl3: a new mineral hosted by salt melt inclusions in porphyry gold systems. Eur. J. Mineral. 29 (2017), 995–1004, 10.1127/ejm/2017/0029-2672.
24. Kontorovich, A.E., Khomenko, A.V., Burshtein, L.M., Likhanov, I.I., Pavlov, A.L., Staroseltsev, V.S., Ten, A.A., Intense basic magmatism in the Tunguska petroleum basin, eastern Siberia, Russia. Pet. Geosci. 3:4 (1997), 359–369, 10.1144/petgeo.3.4.359.
25. Kopylova, M.G., Gaudet, M., Kostrovitsky, S.I., Polozov, A.G., Yakovlev, D.A., Origin of salts and alkali carbonates in the Udachnaya East kimberlite: insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths. J. Volcanol. Geotherm. Res. 327 (2016), 116–134, 10.1016/j.jvolgeores.2016.07.003.
26. Kurosawa, M., Sasa, K., Shin, K.-C., Ishii, S., Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: significance for formation of granite-derived fluids. Geochim. Cosmochim. Acta 182 (2016), 216–239, 10.1016/j.gca.2016.03.015.
27. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J., Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology 43:12 (2015), 1063–1066, 10.1130/G37163.1.
28. Léger, J.-M., Haines, J., Danneels, C., Phase transition sequence induced by high-pressure in CaCl2. J. Phys. Chem. Solids 59:8 (1998), 1199–1204, 10.1016/S0022-3697(98)00057-2.
29. LeSar, R., Introduction to Computational Materials Science: Fundamentals to Applications. 2013, Cambridge University Press, Cambridge, 414.
30. Li, M., Yan, M., Wang, Z., Liu, X., Fang, X., Li, J., The origins of the Mengye potash deposit in the Lanping–Simao Basin, Yunnan Province, Western China. Ore Geol. Rev. 69 (2015), 174–186, 10.1016/j.oregeorev.2015.02.003.
31. Liu, Y.H., Ma, Y.M., He, Z., Cui, T., Liu, B.B., Zou, G.T., Phase transition and optical properties of CaCl2 under high pressure by ab initio pseudopotential plane-wave calculations. J. Phys. Condens. Matter, 19(42), 2007, 425225, 10.1088/0953-8984/19/42/425225.
32. Lowenstein, T.K., Spencer, R.J., Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence. Am. J. Sci. 290:1 (1990), 1–42, 10.2475/ajs.290.1.1.
33. Mazurov, M.P., Bondarenko, P.M., Structural genetic model of the Angara–Illim-type ore-forming system. Geol. Geofiz. 38 (1997), 1584–1593.
34. Mazurov, M.P., Grishina, S.N., Istomin, V.E., Titov, A.T., Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian platform. Geol. Ore Deposits 49:4 (2007), 271–284, 10.1134/S1075701507040022.
35. Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations. Phys. Rev. B 13:12 (1976), 5188–5192, 10.1103/PhysRevB.13.5188.
36. Naumov, V.B., Solovova, I.P., Kovalenker, V.A., Rusinov, V.L., Kononkova, N.N., Crystallization conditions and compositions of silicate and salt melts of the volcanoplutonic complex in the Angren area, Soviet Central Asia.: Trans. (Doklady). USSR Acad. Sci.(5), 1990, 199–202.
37. Newton, R.C., Manning, C.E., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids, 73, 2010, 1597, 10.1111/j.1468-8123.2009.00275.x.
38. Osorgin, N., Tomilenko, A., 1990. Heating stage: Patent No. 1562816 of the USSR.
39. Perdew, J.P., Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:10 (1981), 5048–5079, 10.1103/PhysRevB.23.5048.
40. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77:18 (1996), 3865–3868, 10.1103/PhysRevLett.77.3865.
41. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 2009, 136406, 10.1103/PhysRevLett.100.136406.
42. Polozov, A.G., Svensen, H.H., Planke, S., Grishina, S.N., Fristad, K.E., Jerram, D.A., The basalt pipes of the Tunguska Basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441 (2016), 51–64, 10.1016/j.palaeo.2015.06.035.
43. Porezag, D., Pederson, M.R., Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54:11 (1996), 7830–7836, 10.1103/PhysRevB.54.7830.
44. Refson, K., Tulip, P.R., Clark, S.J., 2006. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73 (15), R4954. doi: https://doi.org/10.1103/PhysRevB.73.155114.
45. Reyf, F.G., Bazheyev, E.D., Magmatic chloride solution and tungsten mineralization. Geochem. Int. 14 (1977), 45–51.
46. Roedder, E., Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta 56:1 (1992), 5–20, 10.1016/0016-7037(92)90113-W.
47. Segall, M.D., Pickard, C.J., Shah, R., Payne, M.C., Population analysis in plane wave electronic structure calculations. Mol. Phys. 89 (1996), 571–577.
48. Seifert, H.-J., Fink, H., Thiel, G., Uebach, J., Thermodynamische und strukturelle Untersuchungen an den Verbindungen der Systeme KCl/MCl2 (M = Ca, Cd, Co, Ni). Z. Anorg. Allg. Chem. 520:1 (1985), 151–159, 10.1002/zaac.19855200118.
49. Tomaszewski, P.E., Structural phase transitions in crystals. I. Database. Phase Transit. 38:3 (1992), 127–220, 10.1080/01411599208222899.
50. Unruh, H.-G., Mühlenberg, D., Hahn, Ch., Ferroelastic phase transition in CaCl2 studied by Raman spectroscopy. Z. Phys. B: Condens. Matter 86:1 (1992), 133–138, 10.1007/BF01323557.
51. Uriarte, L.M., Dubessy, J., Boulet, P., Baonza, V.G., Bihannic, I., Robert, P., Reference Raman spectra of synthesized CaCl2·nH2O solids (n = 0, 2, 4, 6). J. Raman Spectrosc. 46:10 (2015), 822–828, 10.1002/jrs.4730.
52. Warren, J.K., Magma-Evaporite-Hydrothermal Metal Associations. Warren, J.K., (eds.) Evaporites. Evaporites: A Geological Compendium, 2nd Ed, 2016, Springer International Publishing, Cham, 1591–1657.
|