Инд. авторы: Dressel M., Zhukova E.S., Thomas V.G., Gorshunov B.P.
Заглавие: Quantum Electric Dipole Lattice
Библ. ссылка: Dressel M., Zhukova E.S., Thomas V.G., Gorshunov B.P. Quantum Electric Dipole Lattice // JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES. - 2018. - Vol.39. - Iss. 9. - P.799-815. - ISSN 1866-6892.
Внешние системы: DOI: 10.1007/s10762-018-0472-8; РИНЦ: 35531213; РИНЦ: 35705529; SCOPUS: 2-s2.0-85042194584; WoS: 000438824200002;
Реферат: eng: Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.
Ключевые слова: CRYSTALS; SPECTROSCOPY; ICE; SRTIO3; H2O; BERYL; WATER-MOLECULES; OPTICAL-CONSTANTS; Fourier transform infrared spectroscopy; THz spectroscopy; Dielectric spectroscopy; Ferroelectricity; Dipolar interaction; Quantum tunneling; Water; VIBRATIONAL-STATES; D2O;
Издано: 2018
Физ. характеристика: с.799-815
Цитирование: 1. C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013) 2. L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017) 3. Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017) 4. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935) 5. P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973) 6. P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983) 7. D.C. Johnston, Phys. Rev. B 93, 014421 (2016) 8. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005) 9. J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005) 10. M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012) 11. S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016) 12. B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990) 13. K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979) 14. K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991) 15. J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996) 16. S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014) 17. K. Kuratobi and Y. Murata, Science 333, 613 (2011) 18. C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012) 19. A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004) 20. F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012) 21. B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013) 22. E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014) 23. E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014) 24. B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014) 25. A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016) 26. Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017) 27. M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). 10.1039/C7CP06472A 28. B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016) 29. A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411 30. V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962) 31. R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016) 32. G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51 33. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005) 34. B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000) 35. B. A. Kolesov, J. Struct. Chem. 47, 21 (2006) 36. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999) 37. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002) 38. A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964) 39. T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997) 40. C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995) 41. F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972) 42. H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975) 43. H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995) 44. H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991) 45. J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969) 46. M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977) 47. U. Kaatze, Physik Journal 15 (12), 19 (December 2016) 48. L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985)