Инд. авторы: Borodina U.O, Likhacheva A.Y., Golovin A.V., Goryainov S.V., Rashchenko S.V., Korsakov A.V.
Заглавие: Raman spectra of shortite Na2Ca2(CO3)(3) compressed up to 8GPa
Библ. ссылка: Borodina U.O, Likhacheva A.Y., Golovin A.V., Goryainov S.V., Rashchenko S.V., Korsakov A.V. Raman spectra of shortite Na2Ca2(CO3)(3) compressed up to 8GPa // High Pressure Research. - 2018. - Vol.38. - Iss. 3. - P.293-302. - ISSN 0895-7959. - EISSN 1477-2299.
Внешние системы: DOI: 10.1080/08957959.2018.1488973; РИНЦ: 35756521; SCOPUS: 2-s2.0-85049610966; WoS: 000438637800009;
Реферат: eng: A rare mineral shortite, Na2Ca2(CO3)(3), occurs among groundmass minerals in unaltered kimberlites, which suggests its participation in the evolution of kimberlite system. This work presents a high pressure Raman spectroscopic study of natural shortite (Udachnaya east kimberlites) compressed in KBr up to 8GPa in a diamond anvil cell. At ambient pressure the spectrum contains two strong bands related to symmetric C-O stretching vibrations, four in-plane bending modes, and several low-frequency modes of lattice vibrations. Upon the pressure increase up to 8GPa, almost all the bands exhibit positive shift with the rate of 1-4cm(-1)/GPa for the lattice modes and 3.6 and 3.9cm(-1)/GPa for the C-O stretching modes. The shifts of Raman modes are rather regular, which implies the absence of reconstructive phase transitions within the studied pressure range, similarly to the behavior of nyerereite, a related carbonate mineral. However, minor anomalies in the /P and FWHM/P dependences, observed at about 2GPa, suggest some rearrangement and disordering of carbonate groups. The obtained data can be used for the estimation of residual pressure in shortite-bearing inclusions in deep-seated minerals.
Ключевые слова: EVOLUTION; CALCITE; MINERALS; NYEREREITE; MANTLE; CARBONATE; HIGH-PRESSURE; MICRO-INCLUSIONS; diamond anvil cell; Raman spectroscopy; carbonate; Shortite; KIMBERLITE; ARAGONITE;
Издано: 2018
Физ. характеристика: с.293-302
Цитирование: 1. Dickens B, Hyman A, Brown W., Crystal structure of Ca2Na2(CO3)3 (shortite). J Res Natl Bur Stand Sec A-Phys Chem, A. 1971;75:129–140. doi: 10.6028/jres.075A.013 2. Fahey J., Shortite, a new carbonate of sodium and calcium. Am Mineral. 1939;24(8):514–518. 3. Golovin AV, Sharygin IS, Korsakov AV., Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017;455:357–375. doi: 10.1016/j.chemgeo.2016.10.036 4. Golovin AV, Sharygin IS, Kamenetsky VS, et al. Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem Geol. 2018;483:261–274. doi: 10.1016/j.chemgeo.2018.02.016 5. Watkinson DH, Chao GY., Shortite in kimberlite from the Upper Canada Gold Mine, Ontario. J Geol. 1973;81(2):229–233. doi: 10.1086/627839 6. Kamenetsky V, Sharygin V, Kamenetsky M, et al. Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochem Int. 2006;44(9):935–940. doi: 10.1134/S0016702906090084 7. Kamenetsky VS, Kamenetsky MB, Sharygin VV, et al. Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chem Geol. 2007;237(3):384–400. doi: 10.1016/j.chemgeo.2006.07.010 8. Kamenetsky VS, Kamenetsky MB, Golovin AV, et al. Ultra-fresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos. 2012;152:173–186. doi: 10.1016/j.lithos.2012.04.032 9. Kamenetsky VS, Golovin AV, Maas R, et al. Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci Rev. 2014;139:145–167. doi: 10.1016/j.earscirev.2014.09.004 10. Aspden JA., The composition of solid inclusions and the occurrence of shortite in apatites from the Tororo carbonatite complex of eastern Uganda. Mineral Mag. 1981;44:201–204. doi: 10.1180/minmag.1981.044.334.14 11. Zaitsev AN, Chakhmouradian AR., Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II. Oxysalt minerals. Can Mineral. 2002;40(1):103–120. doi: 10.2113/gscanmin.40.1.103 12. Navon O, Hutcheon I, Rossman G, et al. Mantle-derived fluids in diamond micro-inclusions. Nature. 1988;335(6193):784–789. doi: 10.1038/335784a0 13. Nasdala L, Hofmeister W, Harris JW, et al. Letter. Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. Am Mineral. 2005;90(4):745–748. doi: 10.2138/am.2005.1690 14. Kagi H, Odake S, Fukura S, et al. Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russ Geol Geophys. 2009;50(12):1183–1187. doi: 10.1016/j.rgg.2009.11.016 15. Golovin A, Korsakov A, Gavryushkin P, et al. Raman spectra of nyerereite, gregoryite, and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J Raman Spectrosc. 2017;48(11):1559–1565. doi: 10.1002/jrs.5143 16. White W., The carbonate minerals. The infrared spectra of minerals. 1974. 17. Frost RL, Dickfos MJ., Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim Acta Part A. 2008;71(1):143–146. doi: 10.1016/j.saa.2007.11.021 18. Gillet P, Biellmann C, Reynard B, et al. Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner. 1993;20(1):1–18. doi: 10.1007/BF00202245 19. Gunasekaran S, Anbalagan G, Pandi S., Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc. 2006;37(9):892–899. doi: 10.1002/jrs.1518 20. Williams Q, Vennari C, O’Bannon IIIE, editors. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite. AGU Fall Meeting Abtracts; San Francisco, 2015. 21. Kraft S, Knittle E, Williams Q., Carbonate stability in the Earth’s mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J Geophys Res. 1991;96(B11):17997–18009. doi: 10.1029/91JB01749 22. Liu L-g, Mernagh T, Jaques A., A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle. Contrib Mineral Petrol. 1990;105(2):156–161. doi: 10.1007/BF00678982 23. Collerson KD, Campbell LM, Weaver BL, et al. Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador. Nature. 1991;349(6306):209–214. doi: 10.1038/349209a0 24. Rashchenko SV, Goryainov SV, Romanenko AV, et al. High-pressure Raman study of nyerereite from Oldoinyo Lengai. J Raman Spectrosc. 2017;48:1438–1442. doi: 10.1002/jrs.5152 25. Toby BH, Von Dreele RB., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46(2):544–549. doi: 10.1107/S0021889813003531 26. Fursenko B, Kholdeyev O, Litvin Y, et al. Apparatus with transparent anvils-windows for optical and X-ray analysis under high pressure (abstract only). Pribory i Tekhnika Eksperimenta, (Moscow, USSR). 1984;27(5):174–178. 27. Rashchenko SV, Kurnosov A, Dubrovinsky L, et al. Revised calibration of the Sm: SrB4O7 pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale. J Appl Phys. 2015;117(14):145902-1–145902-5. doi: 10.1063/1.4918304 28. Wojdyr M., Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43(5):1126–1128. doi: 10.1107/S0021889810030499 29. Bolotina NB, Gavryushkin PN, Korsakov AV, et al. Incommensurately modulated twin structure of nyerereite Na1.64K0.36Ca(CO3)2. Acta Crystallogr Sect B: Struct Sci, Cryst Eng Mater. 2017;73(2):276–284. doi: 10.1107/S2052520616020680