Инд. авторы: | Fiedler S., Eremeev S.V., Vladimir A.G., Kaveev A.K., Tereshchenko O.E., Kokh K.A., Chulkov E.V., Bentmann H., Reinert F. |
Заглавие: | Topological states induced by local structural modification of the polar BiTeI(0001) surface |
Библ. ссылка: | Fiedler S., Eremeev S.V., Vladimir A.G., Kaveev A.K., Tereshchenko O.E., Kokh K.A., Chulkov E.V., Bentmann H., Reinert F. Topological states induced by local structural modification of the polar BiTeI(0001) surface // New Journal of Physics. - 2018. - Vol.20. - Art.063035. - ISSN 1367-2630. |
Внешние системы: | DOI: 10.1088/1367-2630/aac75e; РИНЦ: 35733048; SCOPUS: 2-s2.0-85049384379; WoS: 000435907600010; |
Реферат: | eng: The layered polar semiconductor BiTeI exhibits large Rashba-type spin-orbit splittings in its bulk and surface electronic structure. Here we report an artificial structural modification near the surface of BiTeI(0001) induced by annealing in vacuum. Using scanning tunneling microscopy we show that the annealing-induced change in the near-surface stoichiometry results in a structural change from a non-centrosymmetric triple-layered to a quintuple-layered structure. The structural change gives rise to the emergence of topological surface states with helical spin texture as demonstrated by angle-resolved photoemission experiments and relativistic first-principles calculations. The results provide a way to modify the electronic structure of layered materials by a controlled manipulation of the atomic stacking sequences.
|
Ключевые слова: | METALS; INVERSION; DIFFRACTION; SPINTRONICS; SEMICONDUCTORS; RASHBA; AUGMENTED-WAVE METHOD; spin-orbit interaction at surfaces; Rashba effect; topological insulator; BITEI; PLANE; |
Издано: | 2018 |
Физ. характеристика: | 063035 |
Цитирование: | 1. Datta S et al 1990 Appl. Phys. Lett. 56 56
2. Žutić I et al 2004 Rev. Mod. Phys. 76 323
3. Yamada S 2005 Sci. Technol. Adv. Mater. 6 406-10
4. Rashba E I 1960 Sov. Phys. Solid State 2 1109-22
5. Sinova J et al 2004 Phys. Rev. Lett. 92 126603
6. Ganichev S D et al 2002 Nature 417 153-6
7. Hasan M et al 2010 Rev. Mod. Phys. 82 3045
8. Ishizaka K et al 2011 Nat. Mater. 10 521-6
9. Eremeev S V et al 2012 Phys. Rev. Lett. 108 246802
10. Crepaldi A et al 2012 Phys. Rev. Lett. 109 096803
11. Landolt G et al 2012 Phys. Rev. Lett. 109 116403
12. Eremeev S V et al 2012 JETP Lett. 96 437-44
13. Sklyadneva I Y et al 2012 Phys. Rev. B 86 094302
14. Eremeev S V et al 2013 New J. Phys. 15 075015
15. Landolt G et al 2013 New J. Phys. 15 085022
16. Sakano M et al 2013 Phys. Rev. Lett. 110 107204
17. Maaß H et al 2016 Nat. Commun. 7 11621
18. Bahramy M S et al 2011 Phys. Rev. B 84 041202(R)
19. Bahramy M S et al 2011 Nat. Commun. 3 679
20. Nechaev I A et al 2017 Sci. Rep. 7 43666
21. Eremeev S V et al 2017 Phys. Rev. B 96 155309
22. Chen Y L et al 2013 Nat. Phys. 9 704-8
23. Yan Y J et al 2015 J. Phys.: Condens. Matter 27 475004
24. Fiedler S et al 2015 Phys. Rev. B 92 235430
25. Zhou J J et al 2014 Sci. Rep. 4 3841
26. Eremeev S V et al 2015 Sci. Rep. 5 12819
27. Tomokiyo A et al 1977 Jpn. J. Appl. Phys. 16 291
28. Fiedler S et al 2014 New J. Phys. 16 075013
29. Horcas I et al 2007 Rev. Sci. Instrum. 78 013705
30. Suturin S M et al 2016 J. Appl. Cryst. 49 1532
31. Kresse G et al 1993 Phys. Rev. B 48 13115
32. Kresse G et al 1996 Comput. Mater. Sci. 6 15-50
33. Blöchl P E 1994 Phys. Rev. B 50 17953
34. Kresse G et al 1999 Phys. Rev. B 59 1758
35. Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
36. Grimme S et al 2010 J. Chem. Phys. 132 154104
37. Shevelkov A V et al 1995 J. Solid State Chem. 114 379-84
38. Petasch U et al 1999 Z. Naturforsch. B 54 234-8
39. Herdt A et al 2013 Phys. Rev. B 87 035127
40. Bentmann H et al 2017 Phys. Rev. Lett. 119 106401
41. Wang Y H et al 2011 Phys. Rev. Lett 107 207602
42. Scholz M R et al 2013 Phys. Rev. Lett. 110 216801
43. Mirhosseini H et al 2012 Phys. Rev. Lett. 109 036803
|