Инд. авторы: Fiedler S., Eremeev S.V., Vladimir A.G., Kaveev A.K., Tereshchenko O.E., Kokh K.A., Chulkov E.V., Bentmann H., Reinert F.
Заглавие: Topological states induced by local structural modification of the polar BiTeI(0001) surface
Библ. ссылка: Fiedler S., Eremeev S.V., Vladimir A.G., Kaveev A.K., Tereshchenko O.E., Kokh K.A., Chulkov E.V., Bentmann H., Reinert F. Topological states induced by local structural modification of the polar BiTeI(0001) surface // New Journal of Physics. - 2018. - Vol.20. - Art.063035. - ISSN 1367-2630.
Внешние системы: DOI: 10.1088/1367-2630/aac75e; РИНЦ: 35733048; SCOPUS: 2-s2.0-85049384379; WoS: 000435907600010;
Реферат: eng: The layered polar semiconductor BiTeI exhibits large Rashba-type spin-orbit splittings in its bulk and surface electronic structure. Here we report an artificial structural modification near the surface of BiTeI(0001) induced by annealing in vacuum. Using scanning tunneling microscopy we show that the annealing-induced change in the near-surface stoichiometry results in a structural change from a non-centrosymmetric triple-layered to a quintuple-layered structure. The structural change gives rise to the emergence of topological surface states with helical spin texture as demonstrated by angle-resolved photoemission experiments and relativistic first-principles calculations. The results provide a way to modify the electronic structure of layered materials by a controlled manipulation of the atomic stacking sequences.
Ключевые слова: METALS; INVERSION; DIFFRACTION; SPINTRONICS; SEMICONDUCTORS; RASHBA; AUGMENTED-WAVE METHOD; spin-orbit interaction at surfaces; Rashba effect; topological insulator; BITEI; PLANE;
Издано: 2018
Физ. характеристика: 063035
Цитирование: 1. Datta S et al 1990 Appl. Phys. Lett. 56 56 2. Žutić I et al 2004 Rev. Mod. Phys. 76 323 3. Yamada S 2005 Sci. Technol. Adv. Mater. 6 406-10 4. Rashba E I 1960 Sov. Phys. Solid State 2 1109-22 5. Sinova J et al 2004 Phys. Rev. Lett. 92 126603 6. Ganichev S D et al 2002 Nature 417 153-6 7. Hasan M et al 2010 Rev. Mod. Phys. 82 3045 8. Ishizaka K et al 2011 Nat. Mater. 10 521-6 9. Eremeev S V et al 2012 Phys. Rev. Lett. 108 246802 10. Crepaldi A et al 2012 Phys. Rev. Lett. 109 096803 11. Landolt G et al 2012 Phys. Rev. Lett. 109 116403 12. Eremeev S V et al 2012 JETP Lett. 96 437-44 13. Sklyadneva I Y et al 2012 Phys. Rev. B 86 094302 14. Eremeev S V et al 2013 New J. Phys. 15 075015 15. Landolt G et al 2013 New J. Phys. 15 085022 16. Sakano M et al 2013 Phys. Rev. Lett. 110 107204 17. Maaß H et al 2016 Nat. Commun. 7 11621 18. Bahramy M S et al 2011 Phys. Rev. B 84 041202(R) 19. Bahramy M S et al 2011 Nat. Commun. 3 679 20. Nechaev I A et al 2017 Sci. Rep. 7 43666 21. Eremeev S V et al 2017 Phys. Rev. B 96 155309 22. Chen Y L et al 2013 Nat. Phys. 9 704-8 23. Yan Y J et al 2015 J. Phys.: Condens. Matter 27 475004 24. Fiedler S et al 2015 Phys. Rev. B 92 235430 25. Zhou J J et al 2014 Sci. Rep. 4 3841 26. Eremeev S V et al 2015 Sci. Rep. 5 12819 27. Tomokiyo A et al 1977 Jpn. J. Appl. Phys. 16 291 28. Fiedler S et al 2014 New J. Phys. 16 075013 29. Horcas I et al 2007 Rev. Sci. Instrum. 78 013705 30. Suturin S M et al 2016 J. Appl. Cryst. 49 1532 31. Kresse G et al 1993 Phys. Rev. B 48 13115 32. Kresse G et al 1996 Comput. Mater. Sci. 6 15-50 33. Blöchl P E 1994 Phys. Rev. B 50 17953 34. Kresse G et al 1999 Phys. Rev. B 59 1758 35. Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 36. Grimme S et al 2010 J. Chem. Phys. 132 154104 37. Shevelkov A V et al 1995 J. Solid State Chem. 114 379-84 38. Petasch U et al 1999 Z. Naturforsch. B 54 234-8 39. Herdt A et al 2013 Phys. Rev. B 87 035127 40. Bentmann H et al 2017 Phys. Rev. Lett. 119 106401 41. Wang Y H et al 2011 Phys. Rev. Lett 107 207602 42. Scholz M R et al 2013 Phys. Rev. Lett. 110 216801 43. Mirhosseini H et al 2012 Phys. Rev. Lett. 109 036803