Инд. авторы: Zhdanov I.S., Kharenko D.S., Podivilov E.V., Babin S.A., Apolonski A., Bednyakova A.E., Fedoruk M.P., Turitsyn S.K.
Заглавие: Generation of Highly-chirped Dissipative Solitons in Er-doped All-fiber Oscillator
Библ. ссылка: Zhdanov I.S., Kharenko D.S., Podivilov E.V., Babin S.A., Apolonski A., Bednyakova A.E., Fedoruk M.P., Turitsyn S.K. Generation of Highly-chirped Dissipative Solitons in Er-doped All-fiber Oscillator // Progress In Electromagnetics Research Symposium. - 2017. - P.1605-1609. - ISBN 978-1-5090-6269-0.
Внешние системы: DOI: 10.1109/PIERS.2017.8262006; РИНЦ: 37322202; РИНЦ: 35490946; РИНЦ: 35490946; SCOPUS: 2-s2.0-85044942243; WoS: 000427596701118;
Реферат: eng: The all-fiber highly-chirped dissipative soliton (HCDS) oscillator was realised at 1.5 mu m wavelength. A normal net cavity dispersion was achieved by using a conventional dispersion compensating fiber (DCF). To separate effects of the amplitude self-modulation and dissipative soliton formation, we exploit in the laser cavity both standard single mode fiber and polarization maintaining single mode fiber. The properties of the generated pulses have been varied by changing spectral filter bandwidth and DCF lengths. After compression of the nJ-level similar to 6 ps HCDS in the external fiber compressor, we measured the output pulse duration of 165 fs (an estimated chirp parameter 40).
Ключевые слова: ENERGY; PULSES; NJ; TOPOLOGICAL INSULATOR; LARGE NORMAL DISPERSION; SATURABLE ABSORBER MIRROR; LASER-OSCILLATOR; POWER;
Издано: 2017
Физ. характеристика: с.1605-1609
Конференция: Название: Progress In Electromagnetics Research Symposium
Аббревиатура: PIERS-2017
Город: Saint Petersburg
Страна: Russia
Даты проведения: 2017-05-22 - 2017-05-25
Цитирование: 1. Marangoni, M., A. Gambetta, C. Manzoni, etal., “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett., Vol. 34, No. 21, 3262-3264, 2009. 2. Krauss, G., S. Lohss, T. Hanke, etal., “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics, Vol. 4, No. 1, 33-36, 2009. 3. Newbury, N. R. and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B, Vol. 24, No. 8, 1756-1770, 2007. 4. Schneider, A., M. Stillhart, and P. Günter, “High efficiency generation and detection of ter-ahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express, Vol. 14, No. 12, 5376, 2007. 5. Kim, J. and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics, Vol. 8, No. 3, 465, 2016. 6. Lefrançois, S., K. Kieu, Y. Deng, et al., “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett., Vol. 35, No. 10, 1569-1571, 2010. 7. Kharenko, D. S., V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett., Vol. 13, No. 2, 25107, 2016. 8. Tarka, J., J. Boguslawski, G. Sobon, et al., “Power scaling of an all-PM fiber Er-doped mode-locked laser based on graphene saturable absorber,” IEEE J. Sel. Top. Quantum Electron., Vol. 23, No. 1, 1-6, 2017. 9. Popa, D., Z. Sun, F. Torrisi, et al., “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett., Vol. 97, No. 20, 16-19, 2010. 10. Sotor, J., G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express, Vol. 22, No. 11, 13244, 2014. 11. Boguslawski, J., G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb 2Te 3 topological insulator,” Opt. Lett., Vol. 40, No. 12, 2786, 2015. 12. Nikodem, M. and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun., Vol. 283, No. 1, 109-112, 2010. 13. Cabasse, A., G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express, Vol. 17, No. 12, 9537-9542, 2009. 14. Cabasse, A., D. Gaponov, K. Ndao, et al., “130 mW average power, 4.6 nJ pulse energy, 10.2 ps pulse duration from an Er3+ fiber oscillator passively mode locked by a resonant saturable absorber mirror,” Opt. Lett., Vol. 36, No. 14, 2620, 2011. 15. Tang, M., H. Wang, R. Becheker, etal., “High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser,” Opt. Lett., Vol. 40, No. 7, 1414-1417, 2015. 16. Chichkov, N. B., K. Hausmann, D. Wandt, et al., “50 fs pulses from an all-normal dispersion erbium fiber oscillator,” Opt. Lett., Vol. 35, No. 16, 3081-3083, 2010. 17. Liu, H., Zh. Liu, E. S Lamb, and F. W. Wise., “Self-similar erbium-doped fiber laser with large normal dispersion,” Opt. Lett., Vol. 39, No. 4, 1019-1021, 2014. 18. Ruehl, A. V. Kuhn, D. Wandt, and D. Kracht., “Normal dispersion erbium-doped fiber laser with pulse energies above 10nJ,” Opt. Express, Vol. 16, No. 5, 3130, 2008. 19. Kharenko, D. S., E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett., Vol. 37, No. 19, 4104-4106, 2012. 20. Bednyakova, A. E., S. A. Babin, D. S. Kharenko, et al., “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express, Vol. 21, No. 18, 20556-20564, 2013.