Инд. авторы: Bulgakov A.V., Mirza I., Bulgakova N.M., Zhukov V.P., Machulka R., Haderka O., Campbell E.E.B., Mocek T.
Заглавие: Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable-state air molecules
Библ. ссылка: Bulgakov A.V., Mirza I., Bulgakova N.M., Zhukov V.P., Machulka R., Haderka O., Campbell E.E.B., Mocek T. Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable-state air molecules // Journal of Physics D: Applied Physics. - 2018. - Vol.51. - Iss. 25. - Art.25LT02. - ISSN 0022-3727. - EISSN 1361-6463.
Внешние системы: DOI: 10.1088/1361-6463/aac56a; РИНЦ: 35767920; SCOPUS: 2-s2.0-85048225927; WoS: 000433925000002;
Реферат: eng: Transmission measurements for femtosecond laser pulses focused in air with spectral analysis of emission from the focal region have been carried out for various pulse energies and air pressures. The air breakdown threshold and pulse attenuation due to plasma absorption arc evaluated and compared with calculations based on the multiphoton ionization model. The plasma absorption is found to depend on the pulse repetition rate and is considerably stronger at 1 kHz than at 1-10 Hz. This suggests that accumulation of metastable states of air molecules plays an important role in initiation of air breakdown, enhancing the ionization efficiency at high repetition rates. Possible channels of metastable-state-assisted air ionization and the role of the observed accumulation effect in laser material processing are discussed.
Ключевые слова: multiphoton ionization; laser-induced air breakdown; femtosecond laser pulses; ENVIRONMENT; HARMONIC-GENERATION; PLASMA; AFTERGLOW; GAS; ABLATION; NITROGEN; EXCITED-STATE; REPETITION RATE; FILAMENTATION; metastable-state molecules;
Издано: 2018
Цитирование: 1. L'Huiller A and Balcou P 1999 Phys. Rev. Lett. 70 774 2. Constant E, Garzella D, Breger P, Mevel E, Dorrer Ch, Le Blanc C, Salin F and Agostini P 1999 Phys. Rev. Lett. 82 1668 3. Kim K Y, Taylor A J, Glownia J H and Rodrigez G 2008 Nat. Photon. 2 605 4. Luo Q, Liu W and Chin S I 2003 Appl. Phys. B 76 337 5. Yao J, Zheng B, Xu H, Li G, Chu W, Ni J, Zhang H, Chin S L, Cheng Y and Xu Z 2011 Phys. Rev. A 84 051802 6. Bulgakova N M, Zhukov V P, Vorobyev A Y and Guo C 2008 Appl. Phys. A 92 883 7. Bulgakova N M, Evtushenko A B, Shukhov Y G, Kudryashov S I and Bulgakov A V 2011 Appl. Surf. Sci. 257 10876 8. Bulgakova N M, Panchenko A N, Zhukov V P, Kudryashov S I, Pereira A, Marine W, Mocek T and Bulgakov A V 2014 Micromachines 5 1344 9. Gamaly E G, Madsen N R, Duering M, Rode A V, Kolev V Z and Luther-Davies B 2005 Phys. Rev. B 71 174405 10. Bulgakova N M and Bulgakov A V 2008 Phys. Rev. Lett. 101 099701 11. Chin S L 2004 From Multiphoton to Tunnel Ionization (Singapore: World Scientific) 12. Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47 13. Broun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73 14. Klimentov S M, Kononenko T V, Pivovarov P A, Garnov S V, Konov V I, Breitling D and Dausinger F 2003 Proc. SPIE 5121 77 15. Heins A, Singh S C and Guo C 2017 Phys. Plasmas 24 072101 16. Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J and Arai A Y 2005 Opt. Express 13 4708 17. Raciukaitis G, Brikas M, Gecys P and Gedvilas M 2008 Proc. SPIE 7005 70052L 18. Biswas S, Karthikeyan A and Kietzig A-M 2016 Materials 9 1023 19. Gill R K, Smith Z J, Lee C and Wachsmann-Hogiu S 2016 J. Biophotonics 9 171 20. Fedotov A B, Naumov A N, Silin V P, Uryupin S A, Zheltikov A M, Tarasevitch A P and von der Linde D 2000 Phys. Lett. A 271 407 21. Beale G E Jr and Broida H P 1959 J. Chem. Phys. 31 1030 22. Lund R E and Oskam H J 1969 Z. Phys. 219 131 23. Supiot P, Dessaux O and Goudmand P 1995 J. Phys. D: Appl. Phys. 28 1826 24. Amorim J 2005 IEEE Trans. Plasma Sci. 33 368 25. Liu J M 1982 Opt. Lett. 7 196 26. Starinskiy S V, Shukhov Y G and Bulgakov A V 2017 Appl. Surf. Sci. 396 1765 27. Kasparian J et al 2000 Opt. Lett. 25 1397 28. Becker A, Aközbek A, Vijayalakshmi K, Oral E, Bowden C M and Chin S L 2001 Appl. Phys. B 73 287 29. Talebpour A, Petit S and Chin S L 1999 Opt. Commun. 171 285 30. Couairon A and Bergé L 2002 Phys. Rev. Lett. 88 135003 31. Martirosyan A E, Altucci C, Bruno A, de Lisio C, Porzio A and Solimeno S 2004 J. Appl. Phys. 96 5450 32. Bukin V V, Garnov S V, Malyutin A A and Strelkov V V 2007 Quantum Electron. 37 961 33. Hu W, Shin Y C and King G 2011 Appl. Phys. Lett. 99 234104 34. Klimentov S M, Kononenko T V, Pivovarov P A, Garnov S V, Konov V I, Prokhorov A M, Breitling D and Dausinger F 2001 Quantum Electron. 31 378 35. Bulgakova N M, Zhukov V P, Sonina S V and Meshcheryakov Y P 2015 J. Appl. Phys. 118 233108 36. Keldysh L V 1965 Sov. Phys. JETP 20 1307 37. Bulgakov A V and Bulgakova N M 1995 J. Phys. D: Appl. Phys. 28 1710 38. Bulgakov A V, Predtechensky M R and Mayorov A P 1996 Appl. Surf. Sci. 96-8 159 39. Xie H, Li G, Yao J, Chu W, Li Z, Zeng B, Wang Z and Cheng Y 2015 Sci. Rep. 5 16006 40. Haque R and von Engel A 1974 Int. J. Electron. 36 239 41. Hunten D M and McElroy M B 1966 Rev. Geophys. 4 303 42. Borst W L and Zipf E C 1971 Phys. Rev. A 3 979