Инд. авторы: Drebushchak V.A., Mylnikova L.N., Drebushchak T.N.
Заглавие: Thermoanalytical investigations of ancient ceramics: Review on theory and practice
Библ. ссылка: Drebushchak V.A., Mylnikova L.N., Drebushchak T.N. Thermoanalytical investigations of ancient ceramics: Review on theory and practice // Journal of Thermal Analysis and Calorimetry. - 2018. - Vol.133. - Iss. 1. - P.135-176. - ISSN 1388-6150. - EISSN 1572-8943.
Внешние системы: DOI: 10.1007/s10973-018-7244-5; РИНЦ: 35496546; РИНЦ: 35749954; SCOPUS: 2-s2.0-85045422853; WoS: 000435398700014;
Реферат: eng: The review consists of four parts. Part I is about the thermal transformation in clay minerals under firing and about the properties of fired clay. The transformations in the clay are expressed quantitatively with the extent of conversion, α, which is the function of two parameters of firing process, time t and temperature T: α = f(t, T). Part II is about the estimation of firing temperature after the analysis of the products of firing clays. All the estimations are speculative, without mathematical equations. It is impossible to derive the value of only one variable T from α = f(t,T), the function of two variables. Part III is about the long-term inverse transformation in fired ceramic paste under ambient conditions. The mass gain as a function of time is used for the evaluation of the time elapsed from the ancient firing, t. Part IV is about the visualization of the extent of conversion of the clay in the paste after all direct and reverse reactions, i.e., α. © 2018, Akadémiai Kiadó, Budapest, Hungary.
Ключевые слова: Firing temperature; Kinetics; Porosity; Thermogravimetry; Ceramic materials; Enzyme kinetics; Estimation; Porosity; Thermogravimetric analysis; Ambient conditions; Analysis of the product; Ancient ceramics; Firing temperature; Inverse transformations; Clay; Thermal transformations; Theory and practice; Mathematical equations; Ancient ceramics;
Издано: 2018
Физ. характеристика: с.135-176
Цитирование: 1. Wilson AL. Elemental analysis of pottery in the study of its provenance: a review. J Archaeol Sci. 1978;5:219–36. 2. Ortega LA, Zuluaga MC, Alonso-Olazabal A, Murelaga X, Alday A. Petrographic and geochemical evidence for long-standing supply of raw materials in Neolithic pottery (Mendandia site, Spain). Archaeometry. 2010;52:987–1001. 3. Arnold DE. Does the standardization of ceramic pastes really mean specialization? J Archaeol Method Theory. 2000;7:333–75. 4. Drebushchak VA, Mylnikova LN, Drebushchak TN, Boldyrev VV. The investigation of ancient pottery: application of thermal analysis. J Therm Anal Calorim. 2005;82:617–26. 5. Rice WE, Sherman RA. Determination of the distribution of heat in kilns firing clay wares. J Am Ceram Soc. 1924;7:738–63. 6. Garnsey W, Alley R. China, ancient kilns and modern ceramics: a guide to the potteries. Canberra: Australian National University Press; 1983. 7. Coulson WD, Wilkie NC. Ptolemaic and Roman kilns in the Western Nile delta. Bull Am Schools Orient Res. 1986;263:61–75. 8. Pool CA. Why a kiln? Firing technology in the Sierra de los Tuxtlas, Veracruz (Mexico). Archaeometry. 2000;42:61–76. 9. Garrigós JB, Kilikoglou V, Day PM. Chemical and mineralogical alteration of ceramics from a Late Bronze Age kiln at Kommos, Crete: the effect on the formation of a reference group. Archaeometry. 2001;43:349–71. 10. Weaver CE, Pollard LD. The chemistry of clay minerals. Amsterdam: Elsevier; 1973. 11. Velde B. Clays and clay minerals in natural and synthetic systems. Amsterdam: Elsevier; 1977. 12. Odom IE. Smectite clay minerals: properties and uses. Philos Trans R Soc Lond A Math Phys Eng Sci. 1984;311:391–409. 13. Kirkpatrick FA. Effect of the size of grog in fire-clay bodies. Technologic papers of the Bureau of Standards, vol. 104. Washington: Government Printing Office; 1918. 10.6028/nbst.3470. 14. Shepard AO. Ceramics for the archaeologist. Washington, DC: Carnegie Institution of Washington; 1956. 15. Rye OS. Keeping your temper under control: materials and the manufacture of Papuan pottery. Archaeol Ocean. 1976;11:106–37. 16. Bronitsky G, Hamer R. Experiments in ceramic technology: the effects of various tempering materials on impact and thermal-shock resistance. Am Antiq. 1986;51:89–101. 17. Rice PM. Pottery analysis: a sourcebook. 2nd ed. Chicago: The University of Chicago Press; 2015. 18. Kruglitsky NN, Datsenko BM, Moroz BI. The influence of raw materials composition on the properties of fired clay products. Ceram Int. 1984;10:78–80. 19. Thümmler F. Engineering ceramics. J Eur Ceram Soc. 1990;6:139–51. 20. Deng T, Li J. Study on preparation of thermal storage ceramic by using clay shale. Ceram Int. 2016;42:18128–35. 21. Bergaya F, Lagaly G, editors. Handbook of clay science, Vol. 5. Developments in clay science. 2nd ed. Amsterdam: Elsevier; 2013. 22. Brosnan DA, Robinson GC. Introduction to drying of ceramics: with laboratory exercises. Westerville: The American Ceramic Society; 2003. 23. Heinrich JG, Gomes CM. Introduction to ceramics processing. http://www.ceramics-processing.com/fileadmin/ceramics/Introduction_to-Ceramics_processing.pdf. Accessed 27 Mar 2018. 24. Panna W, Szumera M, Wyszomirski P. The impact of modifications of the smectite-bearing raw materials on their thermal expansion ability. J Therm Anal Calorim. 2016;123:1153–61. 25. Souza MA, Larocca NM, Pessan LA. Highly thermal stable organoclays of ionic liquids and silane organic modifiers and effect of montmorillonite source. J Therm Anal Calorim. 2016;126:499–509. 26. Húlan T, Trník A, Kaljuvee T, Uibu M, Štubňa I, Kallavus U, Traksmaa R. The study of firing of a ceramic body made from illite and fluidized bed combustion fly ash. J Therm Anal Calorim. 2017;127:79–89. 27. Pasiut K, Partyka J. The influence of ZrO2 addition on the thermal properties of glass–ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO system. J Therm Anal Calorim. 2017;130:343–50. 28. Kaljuvee T, Štubňa I, Húlan T, Kuusik R. Heating rate effect on the thermal behavior of some clays and their blends with oil shale ash additives. J Therm Anal Calorim. 2017;127:33–45. 29. Yataganbaba A, Kurtbaş İ. A scientific approach with bibliometric analysis related to brick and tile drying: a review. Renew Sustain Energy Rev. 2016;59:206–24. 30. Gualtieri AF, Ricchi A, Gualtieri ML, Maretti S, Tamburini M. Kinetic study of the drying process of clay bricks. J Therm Anal Calorim. 2016;123:153–67. 31. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;322:549–60. 32. Cranc J. The mathematics of diffusion. 2nd ed. Bristol: Oxford University Press; 1975. 33. Monceau D, Pieraggi B. Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxid Met. 1998;50:477–93. 34. Tammann G. Über Anlauffarben von Metallen. Z Anorg Allg Chem. 1920;111:78–89. 10.1002/zaac.19201110107. 35. Pilling NB, Bedworth RE. The oxidation of metals at high temperatures. J Inst Metals. 1923;29:529–82. 36. Schütze M. The past, the present and the future of high temperature corrosion research—an EFC view. European Federation of Corrosion. 2008. http://efcweb.org/ppf.html. Accessed 27 Mar 2018. 37. Simmons CT. Henry Darcy (1803–1858): immortalised by his scientific legacy. Hydrogeol J. 2008;16:1023–38. 38. Buckingham E. Studies on the movement of soil moisture. USDA Bureau of Soils Bull 38. Washington: Government Printing Office; 1907. 39. Richards LA. Capillary conduction of liquids through porous mediums. Physics. 1931;1:318–33. 40. Hall C, Hoff WD. Water transport in brick, stone and concrete. 2nd ed. Boca Raton: CRC Press; 2011. 41. Chapuis RP. Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ. 2012;71:401–34. 42. McBride JF, Horton R. An empirical function to describe measured water distributions from horizontal infiltration experiments. Water Resour Res. 1985;21:1539–44. 43. Küntz M, Lavallée P. Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J Phys D Appl Phys. 2001;34:2547–54. 44. Wilson MA, Carter MA, Hoff WD. British standard and RILEM water absorption tests: a critical evaluation. Mater Struct. 1999;32:571–8. 45. Roels S, Carmeliet J, Hens H, Adan O, Brocken H, Cerny R, Pavlik Z, Hall C, Kumaran K, Pel L, Plagge R. Interlaboratory comparison of hygric properties of porous building materials. J Therm Envelope Build Sci. 2004;27:307–25. 46. Carpenter TA, Davies ES, Hall C, Hall LD, Hoff WD, Wilson MA. Capillary water migration in rock: process and material properties examined by NMR imaging. Mater Struct. 1993;26:286–92. 47. Hall C. Anomalous diffusion in unsaturated flow: fact or fiction? Cem Concr Res. 2007;37:378–85. 48. Hall C. Materials: a very short introduction. New York: Oxford University Press; 2014. 49. Griffin IM, Hall C, Hamilton A. Unusual water transport properties of some traditional Scottish shale bricks. Mater Struct. 2014;47:1761–71. 50. Shou D, Ye L, Fan J, Fu K. Optimal design of porous structures for the fastest liquid absorption. Langmuir. 2013;30:149–55. 51. Washburn EW. The dynamics of capillary flow. Phys Rev. 1921;17:273–83. 52. Cai J, Yu B, Zou M, Luo L. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels. 2010;24:1860–7. 53. Washburn EW. Physical chemistry and ceramics. J Franklin Inst. 1922;193:749–73. 54. Washburn EW. Porosity: I. Purpose of the investigation II. Porosity and the mechanism of absorption. J Am Ceram Soc. 1921;4:916–22. 55. Washburn EW, Fooyitt FF. Porosity: III. Water as an absorption liquid. J Am Ceram Soc. 1921;4(12):961–82. 56. Washburn EW, Bunting EN. Porosity: IV. The use of petroleum products as absorption liquids. J Am Ceram Soc. 1921;4:983–9. 57. Washburn EW, Bunting EN. Porosity: V. Recommended procedures for determining porosity by methods of absorption. J Am Ceram Soc. 1922;5:48–56. 58. Washburn EW, Bunting EN. Porosity: VI. Determination of porosity by the method of gas expansion. J Am Ceram Soc. 1922;5:112–30. 59. Washburn EW, Bunting EN. Porosity: VII. The determination of the porosity of highly vitrified bodies. J Am Ceram Soc. 1922;5:527–37. 60. Vassiliou B, White J. Vapour-pressure/capillarity/temperature relationships in clays. Clay Min Bull. 1949;1:80–4. 61. Murray P, White J. The kinetics of clay decomposition. Clay Min Bull. 1949;1:84–7. 62. Murray P, White J. Kinetics of the thermal dehydration of clays. Br Ceram Soc Trans. 1949;48:187–206. 63. MacEwan DMC. Editorial. Clay Min Bull. 1949;1:69–71. 64. Mackenzie R. Origin and development of the International Confederation for Thermal Analysis (ICTA). J Therm Anal Calorim. 1993;40:5–28. 65. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21. 66. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6. 67. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6. 68. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–9. 69. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51. 70. Păcurariu C, Lazău I, Lazău R. Kinetic studies of the dehydroxylation and crystallization of raw kaolinite and fluorides-modified kaolinite. J Therm Anal Calorim. 2017;127:239–46. 71. Bray HJ, Redfern SA. Kinetics of dehydration of Ca-montmorillonite. Phys Chem Miner. 1999;26:591–600. 72. Webb SW, Stanley DA, Scheiner BJ. Thermal analysis of ion-exchanged montmorillonite. Part Sci Technol. 1986;4:131–42. 73. Guggenheim S, van Groos AFK. High-pressure differential thermal analysis (HP-DTA) I. Dehydration reactions at elevated pressures in phyllosilicates. J Therm Anal Calorim. 1992;38:1701–28. 74. Fajnor VŠ, Jesenák K. Differential thermal analysis of montmorillonite. J Therm Anal Calorim. 1996;46:489–93. 75. Prado JR, Vyazovkin S. Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders. Thermochim Acta. 2011;524:197–201. 76. Bray HJ, Redfern SA, Clark SM. The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study. Mineral Mag. 1998;62:647–56. 77. Holdridge DA. Thermal expansion as a method for checking the composition of ceramic clays and of studying mineralogical changes during firing. Clay Miner Bull. 1959;4:94–106. 78. Escalera E, Antti ML, Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conf Ser Mater Sci Eng. 2012;31:012017. 79. Davidtz JC, Low PF. Relation between crystal-lattice configuration and swelling of montmorillonites. Clay Clay Miner. 1970;18:325–32. 80. Foster WR, Savins JG, Waite JM. Lattice expansion and rheological behavior relationships in water-montmorillonite systems. In: Proceedings of the 3rd national conference on clays and clay minerals, vol. 395, National Research Council (Canada), Ottawa; 1955. p. 296–316. 81. Tamura K, Yamada H, Nakazawa H. Stepwise hydration of high-quality synthetic smectite with various cations. Clay Clay Miner. 2000;48:400–4. 82. Sharp JH, Brindley GW, Achar BN. Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc. 1966;49:379–82. 83. Brindley GW, Sharp JH, Patterson JH, Narahari BN. Kinetics and mechanism of dehydroxylation processes. I. Temperature and vapor pressure dependence of dehydroxylation of kaolinite. Am Miner. 1967;52:201–11. 84. Criado JM, Ortega A, Real C, De Torres ET. Re-examination of the kinetics of the thermal dehydroxylation of kaolinite. Clay Miner. 1984;19:653–91. 85. Holt JB, Cutler IB, Wadsworth ME. Rate of thermal dehydration of kaolinite in vacuum. J Am Ceram Soc. 1962;45:133–6. 86. Flynn JH. Thermal analysis kinetics—past, present and future. Thermochim Acta. 1992;203:519–26. 87. Brown M, Flynn RM, Flynn JH. Report on the ICTAC kinetics committee (August 1992 to September 1994). Thermochim Acta. 1995;256:477–83. 88. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28. 89. Brindley GW, Nakahira M. The role of water vapour in the dehydroxylation of clay minerals. Clay Miner Bull. 1957;3:114–9. 90. Štubňa I, Kozík T. Permeability of the electroceramics to gas and its dependence on the firing temperature. Ceram Int. 1997;23:247–9. 91. Wilburn FW, Sharp JH. The influence of heat transfer on reduced-time plots. J Therm Anal. 1994;41:483–92. 92. Ondruška J, Trník A, Medved I. Estimation of mass transfer parameters during dehydroxylation in a large ceramic body by inverse methods. Ceram Int. 2011;37:3299–305. 93. Ondruška J, Trník A, Vozár L. Degree of conversion of dehydroxylation in a large electroceramic body. Int J Thermophys. 2011;32:729–35. 94. Holdren GR, Berner RA. Mechanism of feldspar weathering—I. Experimental studies. Geochim Cosmochim Acta. 1979;43:1161–71. 95. Bowen NL. The melting phenomena of the plagioclase feldspars. Am J Sci. 1913;35:577–99. 96. Presnall DC. Phase diagrams of earth-forming minerals. In: Ahrens TJ, editor. Mineral physics and crystallography: a handbook of physical constants. Washington, D.C.: American Geophysical Union; 1995. p. 248–68. 97. Taylor M, Brown GE. Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta. 1979;43:61–75. 98. Hardy M. X-ray diffraction measurement of the quartz content of clay and silt fractions in soils. Clay Miner. 1992;27:47–55. 99. Dolino G. The α-inc-β transitions of quartz: a century of research on displacive phase transitions. Phase Transitions. 1990;21:59–72. 100. McAdie HG, Garn PD, Menis O. Standard reference materials: selection of differential thermal analysis temperature standards through a cooperative study (SRM 758, 759, 760). Washington: US National Bureau of Standards; 1972. 101. Shoval S, Gaft M, Beck P, Kirsh Y. Thermal behaviour of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal. 1993;40:263–73. 102. Cardiano P, Ioppolo S, De Stefano C, Pettignano A, Sergi S, Piraino P. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Anal Chim Acta. 2004;519:103–11. 103. Bayazit M, Işık I, Issi A, Genç E. Spectroscopic and thermal techniques for the characterization of the first millennium AD potteries from Kuriki-Turkey. Ceram Int. 2014;40:14769–79. 104. Fabbri B, Gualtieri S, Shoval S. The presence of calcite in archeological ceramics. J Eur Ceram Soc. 2014;34:1899–911. 105. Santacreu DA. Identifying spathic calcite recipe in archaeological ceramics: possibilities and limitations. Cerâmica. 2014;60:379–91. 106. Freeman ES, Carroll B. The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem. 1958;62:394–7. 107. Satterfield CN, Feakes F. Kinetics of the thermal decomposition of calcium carbonate. AIChE J. 1959;5:115–22. 108. Narsimhan G. Thermal decomposition of calcium carbonate. Chem Eng Sci. 1961;16:7–20. 109. Zsakó J, Arz HE. Kinetic analysis of thermogravimetric data VII. Thermal decomposition of calcium carbonate. J Therm Anal. 1974;6:651–6. 110. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49. 111. L’vov BV, Polzik LK, Ugolkov VL. Decomposition kinetics of calcite: a new approach to the old problem. Thermochim Acta. 2002;390:5–19. 112. Maciejewski M, Reller A. How (UN)reliable are kinetic data of reversible solid-state decomposition processes? Thermochim Acta. 1987;110:145–52. 113. Criado J, González M, Málek J, Ortega A. The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate. Thermochim Acta. 1995;254:121–7. 114. Ingraham TR, Marier P. Kinetic studies on the thermal decomposition of calcium carbonate. Can J Chem Eng. 1963;41:170–3. 115. Maciejewski M, Oswald HR, Reller A. Thermal transformations of vaterite and calcite. Thermochim Acta. 1994;234:315–28. 116. Schneider H, Fischer RX, Schreuer J. Mullite: crystal structure and related properties. J Am Ceram Soc. 2015;98:2948–67. 117. Chakraborty AK. Phase transformation of kaolinite clay. New Delhi: Springer; 2014. 118. Bellotto M, Gualtieri A, Artioli G, Clark SM. Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation. Phys Chem Miner. 1995;22:207–14. 119. Gualtieri A, Bellotto M, Artioli G, Clark SM. Kinetic study of the kaolinite-mullite reaction sequence. Part II: mullite formation. Phys Chem Miner. 1995;22:215–22. 120. Romero M, Martín-Márquez J, Rincón JM. Kinetic of mullite formation from a porcelain stoneware body for tiles production. J Eur Ceram Soc. 2006;26:1647–52. 121. Pekdemir AD, Sarıkaya Y, Önal M. Thermal transformation kinetics of a kaolinitic clay. J Therm Anal Calorim. 2016;123:767–72. 122. Yürüyen S, Toplan N, Yildiz K, Toplan HÖ. The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system. J Therm Anal Calorim. 2016;125:803–8. 123. Deutou JG, Mohamed H, Nzeukou NA, Kamseu E, Melo UC, Beda T, Leonelli C. The role of kyanite in the improvement in the crystallization and densification of the high strength mullite matrix. J Therm Anal Calorim. 2016;126:1211–22. 124. Loomis GA. Porosity and volume changes of clay fire bricks at furnace temperatures. Technologic papers of the Bureau of Standards, vol. 159. Washington: Government Printing Office; 1920. 125. Whiteley P, Russman HD, Bishop TD. Porosity of building materials—a collection of published results. J Oil Colour Chem Assoc. 1977;60:142–50. 126. Khalaf FM, DeVenny AS. New tests for porosity and water absorption of fired clay bricks. J Mater Civ Eng. 2002;14:334–7. 127. Heinrich JG. Physikalische und chemische Grundlagen der Keramik Teil II. 2010. http://video.tu-clausthal.de/videos/inw/vorlesung/tk-ws2009/Physikalische_und_chemische_Grundlagen_der_Keramik%20_Teil_II.pdf. Accessed 27 Mar 2018. 128. Johari I, Said S, Hisham B, Bakar A, Ahmad ZA. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia). Sci Sinter. 2010;42:245–54. 129. Ali MB, Hamdi N, Rodriguez MA, Srasra E. Macroporous ceramic supports from natural clays. Improvement by the use of activated clays. Ceram Int. 2017;43:1242–8. 130. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JD, Sing KS, Unger KK. Recommendations for the characterization of porous solids (technical report). Pure Appl Chem. 1994;66:1739–58. 131. Fiès JC, Bruand A. Particle packing and organization of the textural porosity in clay–silt–sand mixtures. Eur J Soil Sci. 1998;49:557–67. 132. Hein A, Müller NS, Day PM, Kilikoglou V. Thermal conductivity of archaeological ceramics: the effect of inclusions, porosity and firing temperature. Thermochim Acta. 2008;480:35–42. 133. Fernandes FM, Lourenço PB, Castro F. Ancient clay bricks: manufacture and properties. In: Dan MB, Přikryl R, Török Á, editors. Materials, technologies and practice in historic heritage structures. Dordrecht: Springer; 2010. p. 29–48. 134. Húlan T, Kaljuvee T, Štubňa I, Trník A. Investigation of elastic and inelastic properties of Estonian clay from a locality in Kunda during thermal treatment. J Therm Anal Calorim. 2016;124:1153–9. 135. Monteiro SN, Vieira CM. Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Appl Clay Sci. 2004;27:229–34. 136. Baccour H, Medhioub M, Jamoussi F, Mhiri T. Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J Mater Process Technol. 2009;209:2812–7. 137. Moutou JM, Mbedi R, Elimbi A, Njopwouo D, Yvon J, Barres O, Ntekela HR. Mineralogy and thermal behaviour of the kaolinitic clay of Loutété (Congo-Brazzaville). Res J Environ Earth Sci. 2012;4:316–24. 138. Sousa SJ, Holanda JN. Characterization of non-calcareous “thin” red clay from south-eastern Brazil: applicability in wall tile manufacture. Cerâmica. 2012;58:29–35. 139. Karaman S, Ersahin S, Gunal H. Firing temperature and firing time influence on mechanical and physical properties of clay bricks. J Sci Ind Res (India). 2006;65:153–9. 140. Kidder AV, Shepard AO. The pottery of Pecos, vol. 2. New Haven: Yale University Press; 1936. 141. Church AH, Oxon MA. Some points of contact between the scientific and artistic aspects of pottery and porcelain. Lecture I. Terra-cotta, bricks, basaltes, earthenware, and unglazed bodies in general. J Soc Arts. 1880;29:85–8. 142. Papadopoulou D, Lalia-Kantouri M, Kantiranis N, Stratis J. Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. J Therm Anal Calorim. 2006;84:39–45. 143. Roberts JP. Determination of the firing temperature of ancient ceramics by measurement of thermal expansion. Archaeometry. 1963;6:21–5. 144. Tite MS. Determination of the firing temperature of ancient ceramics by measurement of thermal expansion: a reassessment. Archaeometry. 1969;11:131–43. 145. Squires GL. Practical physics. 4th ed. Cambridge: Cambridge University Press; 2001. 146. Shoemaker DP, Garland CW, Nibler JW. Experiments in physical chemistry. 5th ed. New York: McGraw-Hill Book Company; 1989. 147. Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:291–8. 148. Pollard AM, Batt CM, Stern B, Young SMM. Analytical chemistry in archaeology. Cambridge: Cambridge University Press; 2007. 149. Parr JF, Boyd WE. The probable industrial origin of archaeological daub at an Iron Age site in Northeast Thailand. Geoarchaeology. 2002;17:285–303. 150. Cotter M, Cotter S. “The probable industrial origin of archaeological daub at an Iron Age site in northeast Thailand”(Parr and Boyd, 2002): a comment on the inappropriate application of geophysical and geochemical techniques to an archaeological question. Geoarchaeology. 2003;18:883–93. 151. Parr JF, Boyd WE. Response to Cotter and Cotter: confirming the probable industrial origin of archaeological daub at an Iron Age site in northeast Thailand. Geoarchaeology. 2003;18:895–900. 152. Meacham W, Solheim WG. Determination of the original firing temperature of ceramics from Non Nok Tha and Phimai, Thailand. J Siam Soc Bangk. 1980;68:11–4. 153. Marghussian AK, Fazeli H, Sarpoolaky H. Chemical–mineralogical analyses and microstructural studies of prehistoric pottery from Rahmatabad, South-West Iran. Archaeometry. 2009;51:733–47. 154. Périnet G. Contribution of X-ray diffraction to the evaluation of the firing-temperatures of a ceramic. In: Transactions of the VIIth international ceramic congress. London: The British Ceramic Society; 1960. p. 371–376. 155. Palanivel R, Kumar UR. Thermal and spectroscopic analysis of ancient potteries. Roman J Phys. 2011;56:195–208. 156. Ravisankar R, Naseerutheen A, Annamalai GR, Chandrasekaran A, Rajalakshmi A, Kanagasabapathy KV, Prasad MV, Satpathy KK. The analytical investigations of ancient pottery from Kaveripakkam, Vellore dist, Tamilnadu by spectroscopic techniques. Spectrochim Acta Mol Biomol Spectrosc. 2014;121:457–63. 157. Moropoulou A, Bakolas A, Bisbikou K. Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochim Acta. 1995;269:743–53. 158. Giordana A, Peacock E, McCarthy M, Guilbeau K, Jacobs P, Seger JD, Ramsey WG. Estimation of firing temperature and compositional variability of archaeological pottery by differential scanning calorimetry. Mater Res Soc Symp Proc. 2004;852:OO8.6.1–7. 159. Campanella L, Favero G, Flamini P, Tomassetti M. Prehistoric terracottas from the Libyan Tadrart Acacus. J Therm Anal Calorim. 2003;73:127–42. 160. Gibson A, Woods A. Prehistoric pottery for the archaeologist. Leicester: Leicester University Press; 1990. 161. Singh P, Sharma S. Thermal and spectroscopic characterization of archeological pottery from Ambari, Assam. J Archaeol Sci Rep. 2016;5:557–63. 162. Sanjurjo-Sánchez J, Fenollós JL, Polymeris GS. Technological aspects of Mesopotamian Uruk pottery: estimating firing temperatures using mineralogical methods, thermal analysis and luminescence techniques. Archaeol Anthropol Sci. 2016. 10.1007/s12520-016-0409-x. 163. Gosselain OP. Bonfire of the enquiries. Pottery firing temperatures in archaeology: what for? J Archaeol Sci. 1992;19:243–59. 164. Smith AL. Bonfire II: the return of pottery firing temperatures. J Archaeol Sci. 2001;28:991–1003. 165. Hall C, Green K, Hoff WD, Wilson MA. A sharp wet front analysis of capillary absorption into n-layer composite. J Phys D Appl Phys. 1996;29:2947–50. 166. Pachepsky Y, Timlin D, Rawls W. Generalized Richards’ equation to simulate water transport in unsaturated soils. J Hydrol. 2003;272:3–13. 167. Wilson MA, Hoff WD, Hall C, McKay B, Hiley A. Kinetics of moisture expansion in fired clay ceramics: a (time) 1/4 law. Phys Rev Lett. 2003;90:125503. 168. Savage SD, Wilson MA, Carter MA, Hoff WD, Hall C, McKay B. Moisture expansion and mass gain in fired clay ceramics: a two-stage (time)1/4 process. J Phys D Appl Phys. 2008;41:055402. 169. Savage SD, Wilson MA, Carter MA, McKay B, Hoff WD, Hall C. Mass gain due to the chemical recombination of water in fired clay brick. J Am Ceram Soc. 2008;91:3396–8. 170. Wilson MA, Carter MA, Hall C, Hoff WD, Ince C, Savage SD, Mckay B, Betts IM. Dating fired-clay ceramics using long-term power law rehydroxylation kinetics. Proc R Soc Lond A Mater. 2009;465:2407–15. 171. Wilson MA, Hall C, Hoff WD, Carter MA. Archaeological dating technique. Patent. 2010. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010131024. Accessed 27 Mar 2018. 172. Quirk JP. Significance of surface areas calculated from water vapor sorption isotherms by use of the BET equation. Soil Sci. 1955;80:423–30. 173. Hagymassy J, Brunauer S, Mikhail RS. Pore structure analysis by water vapor adsorption: I. t-curves for water vapor. J Colloid Interface Sci. 1969;29:485–91. 174. Newman ACD. The specific surface of soils determined by water sorption. Eur J Soil Sci. 1983;34:23–32. 175. Pires J, Araujo AC, Carvalho AP, Pinto ML, Gonzalez-Calbet JM, Ramırez-Castellanos J. Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous Mesoporous Mater. 2004;73:175–80. 176. Lowell S, Shields JE. Powder surface area and porosity. 3rd ed. Berlin: Springer; 1991. 177. Ninov J. Hygroscopic sorption properties of metakaolin. J Univ Chem Technol Metall. 2010;45:47–52. 178. Cagnon H, Aubert JE, Coutand M, Magniont C. Hygrothermal properties of earth bricks. Energy Build. 2014;80:208–17. 179. Hare VJ. Theoretical constraints on the precision and age range of rehydroxylation dating. R Soc Open Sci. 2015;2:140372. 180. Tosheva L, Mihailova B, Wilson MA, Carter MA. Gravimetric and spectroscopic studies of the chemical combination of moisture by as-fired and reheated terracotta. J Eur Ceram Soc. 2010;30:1867–72. 181. Hall C, Hoff WD. Moisture expansivity of fired-cay ceramics. J Am Ceram Soc. 2012;95:1204–7. 182. Wilson MA, Clelland S, Carter MA, Ince C, Hall C, Hamilton A, Batt CM. Rehydroxylation of fired-clay ceramics: factors affecting realy-stage mass gain in dating experiments. Archaeometry. 2014;56:689–702. 183. Clegg F, Breen C, Carter MA, Ince C, Savage SD, Wilson MA. Dehydroxylation and rehydroxylation mechanisms in fired clay ceramic: a TG-MS and DRIFTS investigation. J Am Ceram Soc. 2012;95:416–22. 184. Barrett GT. Rehydroxylation (RHX) dating: issues due to short term elevated temperature events. J Archaeol Sci Rep. 2017;14:609–19. 185. Barrett GT. Rehydroxylation (RHX) dating: trials on post-medieval brick using a component based approach. J Archaeol Sci Rep. 2017;16:489–502. 186. Barrett GT. Rehydroxylation (RHX) dating: mass loss issues due to incomplete drying, carbon content, and mineral alteration. J Archaeol Sci Rep. 2017;16:472–88. 187. Barrett GT. Processes and kinetics of mass gain in archeological brick following drying and reheating. J Am Ceram Soc. 2017;100:3108–21. 188. Barrett GT. Rehydroxylation dating: assessment for archaeological application. Ph.D. thesis, Queen’s University Belfast. 2015. http://pure.qub.ac.uk/portal/files/61474855/G_Barrett_PhD_RHX_Full.pdf. Accessed 27 Mar 2018. 189. Shoval S, Paz Y. A study of the mass-gain of ancient pottery in relation to archeological ages using thermal analysis. Appl Clay Sci. 2013;82:113–20. 190. Podoba R, Kaljuvee T, Štubňa I, Podobník Ľ, Bačík P. Research on historical bricks from a Baroque Church. J Therm Anal Calorim. 2014;118:591–5. 191. Hall C, Hamilton A, Wilson MA. The influence of temperature on rehydroxylation [RHX] kinetics in archaeological pottery. J Archaeol Sci. 2013;40:305–12. 192. Bowen PK, Ranck HJ, Scarlett TJ, Drelich JW. Rehydration/rehydroxylation kinetics of reheated XIX-century Davenport (Utah) ceramic. J Am Ceram Soc. 2011;94:2585–91. 193. Bowen PK, Drelich J, Scarlett TJ. Modeling rehydration/rehydroxylation mass-gain curves from Davenport ceramics. J Am Ceram Soc. 2013;96:885–91. 194. Barrett GT. Rehydroxylation dating of fired clays: an improved time-offset model to account for the effect of cooling on post-reheating mass gain. J Archaeol Sci. 2013;40:3596–603. 195. Le Goff M, Gallet Y. Evaluation of the rehydroxylation dating method: insights from a new measurement device. Quat Geochronol. 2014;20:89–98. 196. Gallet Y, Le Goff M. Rehydration and rehydroxylation in ancient ceramics: new constraints from mass gain analyses versus annealing temperatures. J Am Ceram Soc. 2015;98:2738–44. 197. Le Goff M, Gallet Y. Experimental variability in kinetics of moisture expansion and mass gain in ceramics. J Am Ceram Soc. 2015;98:398–401. 198. Drelich J, Bowen PK, Scarlett TJ. Effect of humidity instability on rehydroxylation in fired clay ceramics. J Am Ceram Soc. 2013;96:1047–50. 199. Burakov KS, Nachasova IE. Archaeomagnetic study and rehydroxylation dating of fired-clay ceramics. Izv Phys Solid Earth. 2013;49:105–12. 200. Le Goff M, Gallet Y. Evidence for complexities in the RHX dating method. Archaeometry. 2015;57(5):897–910. 201. Kloužková AL, Zemenová P, Kohoutková M, Kloužek JA. Hydrothermal rehydroxylation of kaolinite studied by thermal analysis. Ceramics-Silikáty. 2013;57(4):342–7. 202. Paige J, Michelaki K, Campisano C, Barton M, Heimsath A. Are the intensities and durations of small-scale pottery firings sufficient to completely dehydroxylate clays? Testing a key assumption underlying ceramic rehydroxylation dating. J Archaeol Sci. 2017;79:44–52. 203. Zhao S, Bowen PK, Drelich JW, Scarlett TJ. Reproducibility in rehydroxylation of ceramic artifacts. J Am Ceram Soc. 2015;98:3367–72. 204. Nachasova IE, Burakov KS, Pilipenko OV, Markov GP. Variations in geomagnetic field and temperature in Spain during the past millennium. Izv Phys Solid Earth. 2015;51:574–82. 205. Numrich M, Kutschera W, Steier P, Sterba JH, Golser R. On the effect of organic carbon on rehydroxylation (RHX) dating. J Archaeol Sci. 2015;57:92–7. 206. Moinester M, Piasetzky E, Braverman M. RHX dating of archeological ceramics via a new method to determine effective lifetime temperature. J Am Ceram Soc. 2015;98:913–9. 207. Carmeliet J, Hens H, Roels S, Adan O, Brocken H, Cerny R, Pavlik Z, Hall C, Kumaran K, Pel L. Determination of the liquid water diffusivity from transient moisture transfer experiments. J Therm Envelope Build Sci. 2004;27:277–305. 208. Feng C, Janssen H, Feng Y, Meng Q. Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility. Build Environ. 2015;85:160–72. 209. Derkowski A, Kuligiewicz A. Rehydroxylation in smectites and other clay minerals observed in situ with a modified thermogravimetric system. Appl Clay Sci. 2017;136:219–29. 210. Sanjurjo-Sánchez J. Dating historical buildings: an update on the possibilities of absolute dating methods. Int J Arch Herit. 2016;10:620–35. 211. Nachasova IE, Burakov KS, Bernabeu J. Archeomagnetic studies of the ceramic material from the “Cendres Cave” multilayer Neolithic site. Geomagn Aeron. 2002;42:808–13. 212. Drebushchak VA, Mylnikova LN, Drebushchak TN, Boldyrev VV, Molodin VI, Derevyanko EI, Mylnikov VP, Nartova AV. Physical and chemical characteristics of Late Bronze Age and Early Iron Age ceramics. Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences; 2006 (in Russian). 213. Drebushchak VA, Mylnikova LN, Molodin VI. Thermogravimetric investigation of ancient ceramics: metrological analysis of sampling. J Therm Anal Calorim. 2007;90:73–9. 214. Drebushchak VA, Mylnikova LN, Drebushchak TN. The mass-loss diagram for the ancient ceramics. J Therm Anal Calorim. 2011;104:459–66. 215. Drebushchak VA, Mylnikova LN, Drebushchak TN. Physical and chemical properties of ceramics from the chronologically transitional (Late Bronze-Early Iron age) site of Linyovo-1, Southern Siberia: methodological prospects and interpretation of the results. Archaeol Ethnol Anthropol Eurasia. 2010;38:60–75. 216. Shoval S, Beck P, Kirsh Y, Levy D, Gaft M, Yadin E. Rehydroxyiation of clay minerals and hydration in ancient pottery from the ‘Land of Geshur’. J Therm Anal Calorim. 1991;37:1579–92. 217. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40:1361–403. 218. Drebushchak VA. Isobaric dehydration of zeolites. Geokhimiya. 1990;124–9. 219. Kloužková A, Kavanová M, Kohoutková M, Zemenová P, Dragoun Z. Identification of causes of degradation of Gothic ceramic tiles by thermal analyses. J Therm Anal Calorim. 2016;125:1311–8. 220. Földvári M. Handbook of the thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, vol. 213. Budapest: Geological Institute of Hungary; 2011. 221. Kubliha M, Trnovcová V, Ondruška J, Štubňa I, Bošák O, Kaljuvee T, Bačík P. DC conductivity of illitic clay after various firing. J Therm Anal Calorim. 2016;124:81–6.