Инд. авторы: Chepurov A.I., Sonin V.M., Zhimulev E.I, Chepurov A.A., Pomazansky B.S., Zemnukhov A.L.
Заглавие: Dissolution of diamond crystals in a heterogeneous (metal-sulfide-silicate) medium at 4 GPa and 1400 °C
Библ. ссылка: Chepurov A.I., Sonin V.M., Zhimulev E.I, Chepurov A.A., Pomazansky B.S., Zemnukhov A.L. Dissolution of diamond crystals in a heterogeneous (metal-sulfide-silicate) medium at 4 GPa and 1400 °C // Journal of Mineralogical and Petrological Sciences. - 2018. - Vol.113. - Iss. 2. - P.59-67. - ISSN 1345-6296. - EISSN 1349-3825.
Внешние системы: DOI: 10.2465/jmps.170526; РИНЦ: 35513474; SCOPUS: 2-s2.0-85047060772;
Реферат: eng: As a result of artificial dissolution of diamonds at 4 GPa and 1400 °C in a heterogeneous solvent (Fe-S melt with the addition of natural kimberlite in an amount of 5 wt%), it is established that, in the dissolution process the diamond crystals of octahedron form with flat faces and sharp edges are transformed into rounded octahedroids. The role of silicate additives is to local screen the surface of diamonds with the formation of etch hillocks, which gives crystals a visually complex external morphology. Thus morphologically complex natural diamonds with irregular shapes may form by dissolution by heterogeneous solvents in the mantle. Metal-sulfide- silicate melts consisting of immiscible components with different carbon solubility are the most likely candidates for such solvents. © 2018, Tohoku University.
Ключевые слова: Morphology; High pressure; Dissolution; Diamond;
Издано: 2018
Физ. характеристика: с.59-67
Цитирование: 1. Afanasiev, V.P., Yefimova, E.S., Zinchuk, N.N. and Koptil, V.I. (2000) Atlas of morphology of diamonds from Russian sour-ces. pp. 293, SPC UIGGM SB RAS, Novosibirsk, Russia (in Russian with English abstract) 2. Arima, M. (1996) Experimental study of growth and resorption of diamond in kimberlitic melts at high pressure and temperatures. Proceedings of the 3rd NIRIM International Symposium on Advanced Materials (ISAM'96), 223-228 3. Arima, M. and Inoue, M. (1995) High pressure experimental study on growth and resorption of diamond in kimberlite melt. Proceedings of the 6rd International Kimberlite Conference, UIGGM SB RAS, Novosibirsk, Russia, 8-10 4. Arima, M. and Kozai, Y. (2008) Diamond dissolution rates in kimberlitic melts at 1300-1500 °C in the graphite stability field. European Journal of Mineralogy, 20, 357-364 5. Banas, A., Stachel, T., Muehlenbachs, K. and McCandless, T.E. (2007) Diamonds from the Buffalo Head Hills, Alberta: Formation in a non-conventional setting. Lithos, 93, 199-213 6. Bowen, D.C., Ferraris, R.D., Palmer, C.E. and Ward, J.D. (2009) On the unusual characteristics of diamonds from Letseng-la-Terae kimberlites, Lesotho. Lithos, 112S, 767-774 7. Bescrovanov, V.V. (2000) Diamond ontogeny. pp. 264, Nauka, Novosibirsk, Russia 8. Boyd, F.R. and Gurney, J.J. (1986) Diamonds and the African lithosphere. Science, 323, 472-477 9. Brenan, J.M. (2008) Re-Os fractionation by sulfide melt-silicate melt partitioning: A new spin. Chemical Geology, 248, 140-165 10. Bulanova, G.P., Griffin, W.L. and Ryan, C.G. (1998) Nucleation environment of diamonds from Yakutian kimberlites. Mineralogical Magazine, 62, 409-419 11. Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G. and Prakapenka, V.B. (2007) Partial melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interior, 162, 119-128 12. Chabot, N.L., Campbell, A.J., McDonough, W.F., Draper, D.S., Agee, C.B., Humayun, M.,Watson, H.C., Cottrell, E. and Saslow, S.A. (2008) The Fe-C system at 5 GPa and implications for Earth's core. Geochimica et Cosmochimica Acta, 72, 4146-4158 13. Chepurov, A.A., Sonin, V.M. and Chepurov, A.I. (2002) Influence of silicates upon the growth of synthetic diamond crystals. Proceedings of the Russian Mineralogical Society, 131, 107-110 (in Russian with English abstract) 14. Chepurov, A.I., Khokhriakov, A.F., Sonin, V.M., Palyanov, Yu.N. and Sobolev, N.V. (1985) The shape of diamond crystal dissolution in silicate melts under high pressure. Doklady Akademii Nauk, 285, 212-216 (in Russian with English abstract) 15. Chepurov, A.I., Fedorov, I.I. and Sonin, V.M. (1998) Experimental studies of diamond formation at high PT-parameters (supplement to the model for natural diamond formation). Geologiya i Geofizika, 39, 234-244 (in Russian with English abstract) 16. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., Sonin, V.M., Chepurov, A.A., Surkov, N.V. and Kovyazin, S.V. (2010) Problem of water in the upper mantle: antigorite breakdown. Doklady Earth Sciences, 434, 1275-1278 17. Dasgupta, R., Buono, A., Whelan, G. and Walker, D. (2009) High-pressure melting relations in Fe-C-S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochimica et Cosmochimica Acta, 73, 6678-6691 18. Davies, R.M., O'Reilly, S.Y. and Griffin, W.L. (1999) Diamonds from Wellington, NSW: insights into the origin of eastern Australian diamonds. Mineralogical Magazine, 63, 447-471 19. Deng, L., Fei, Y., Liu, X., Gong, Z. and Shahar, A. (2013) Effect of carbon, sulfur and silicon on iron melting at high pressure: implications for composition and evolution of the planetary terrestrial cores. Geochimica et Cosmochimica Acta, 114, 220-233 20. Evdokimov, M.D., Ladygina, M.Y. and Nesterov, A.R. (2001) Morphology of diamonds as a possible indicator of their genesis. Journal of Mineralogy and Geochemistry, 176, 153-177 21. Fedortchouk, Y., Canil, D. and Semenets, E. (2007). Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. American Mineralogist, 92, 1200-1212 22. Fersman, A.E. and Goldschmidt, V. (1911) Der Diamant. Heidelberg. 274s 23. Frost, D.J., Leibske, C., Langenhorst, F. and McCammon, C.F. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428, 409-412 24. Frost, D.J. and McCammon, C.A. (2008) The redox state of the Earth's mantle. Annual Review of Earth Planetary Sciences, 36, 389-420 25. Garanin, V.K. and Kudryavtseva, G.P. (1990) Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites. Lithos, 25, 211-217 26. Geiger, C.A., Langer, K., Bell, D.R., Rossman, G.R. and Winkler, B. (1991) The hydroxide component in synthetic pyrope. American Mineralogist, 76, 49-59 27. Gurney, J.J., Hildebrand, P.R., Carlson, J.A., Fedortchouk, Y. and Dyck, D.R. (2004) The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos, 77, 21-38 28. Gurney, J.J., Helmstaedt, H.H., Richardson, S.H. and Shirey, S.B. (2010) Diamond through time. Economic Geology, 105, 689-712 29. Kadik, A.A., Koltashev, Yu.A., Kryukova, E.V., Plotnichenko, V.G., Tsekhonya, T.I. and Kononkova, N.N. (2015) Solution behavior of C-O-H volatiles in FeO-Na2O-SiO2-Al2O3 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550 °C. Geochemistry International, 52, 707-725 30. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Sobolev, N.V. and Pokhilenko, N.P. (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology, 32, 845-848 31. Kaminsky, F.V., Zakharchenko, O.D., Griffin, W.L., Channer, D.M.Der and Khachatryan-Blinova, G.K. (2000) Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38, 1347-1370 32. Kaminsky, F.V., Zakharchenko, O.D., Davies, R., Griffin, W.L., Khachatryan-Blinova, G.K. and Shiryaev, A.A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140, 734-752 33. Kaminsky, F.V. and Wirth, R. (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canadian Mineralogist, 49, 555-572 34. Kanda, H., Yamaoka, S., Setaka, N. and Komatsu, H. (1977) Etching of diamond octahedrons by high pressure water. Journal of Crystal Growth, 38, 1-7 35. Kennedy, C.S. and Kennedy, G.C. (1976) The equilibrium boundary between graphite and diamond. Journal of Geophysical Research, 81, 2467-2470 36. Khokhryakov, A.F. and Pal'yanov, Yu.N. (2007) The evolution of diamond morphology in the process of dissolution: Experi-mental data. American Mineralogist, 92, 909-917 37. Khokhryakov, A.F. and Pal'yanov, Yu.N. (2010). Influence of the fluid composition on diamond dissolution forms in carbonate melts. American Mineralogist, 95, 1508-1514 38. Kohlstedt, D.L., Keppler, H. and Rubie, D.C. (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345-357 39. Kozai, Y. and Arima, M. (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300-1420 °C and 1 GPa with controlled oxygen partial pressure. American Mineralogist, 90, 1759-1766 40. McCallum, M.E., Huntley, P.M., Falk, R.W. and Otter, M.L. (1994) Morphological, resorption and etch feature trends of diamonds from kimberlite populations within the Colorado-Wyoming State Line district, USA. Proceedings of 5th International Kimberlite Conference (Meyer, H.O.A. and Leonardos, O.H. Eds.). 2, CPRM, Rio de Janeiro, Brazil, 32-50 41. McCandless, T.E., Letendre, J. and Eastoe, C.J. (1999) Morphology and carbon composition of microdiamonds from Dachine, French Guiana. Proceedings of 7th International Kimberlite Conference (Gurney, J.J., Gurney, J.L., Pascoe M.D. and S.Y. Richarson, Eds.). 2, Red Roof Publishers, Cape Town, South Africa, 550-556 42. Mikhail, S., Guillermier, C., Franchi, A., Beard, A.D., Crispin, K., Verchovsky, A.B., Jones, A.P. and Milledge, H.J. (2014) Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from Earth's mantle. Geochemistry, Geophysics, Geosystems, 15, 855-866 43. Moore, A.E. (2009) Type II diamonds: Flamboyant megacrysts? South African Journal of Geology, 112, 23-38 44. Moore, A.E. (2014) The origin of large irregular gem-quality type II diamonds and the rarity of blue type IIb varieties. South African Journal of Geology, 117, 219-236 45. Orlov, I.U. (1977) The Mineralogy of the Diamond. pp. 235, Wiley 46. Pandya, N.S. and Tolansky, S. (1954) The etching of diamond. II Cleavage, dodecahedron and cube faces. Proceedings of the Royal Society, 225A (1160), 40-48 47. Patel, A.R. and Agarval, M.K. (1965) Microstructures on Panna Diamond surfaces. American Mineralogist, 50, 124-131 48. Poli, S., Franzolin, E., Fumagalli, P. and Crotini, A. (2009) The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth and Planetary Science Letters, 278, 350-360 49. Poirier, J.P. (1994) Light elements in the Earth's outer core: A critical review. Physics of the Earth and Planetary Interior, 85, 319-337 50. Richardson, S.H. (1986) Latter-day origin of diamonds of eclogitic paragenesis. Nature, 322, 623-626 51. Richardson, S.H., Gurney, J.J., Erlank, A.J. and Harris, J.W. (1984) Origin of diamond in old enriched mantle. Nature, 310, 198-202 52. Robinson, D.N. (1978) The characteristics of natural diamond and their interpretation. Minerals Science and Engineering, 10, 55-72 53. Robinson, D.N., Scott, J.A., Van Niekerk, A. and Anderson, V.G. (1986) The sequence of events reflected in the diamonds of some southern African kimberlites. Proceedings of 4th International Kimberlite Conference (Ross, J. Ed.). 2, GSA Special Publication, 990-1000 54. Rohrbach, A., Ballhaus, C., Gola-Schindler, U., Ulmer, P., Kamenetsky, V.S. and Kuzmin, D.V. (2007) Metal saturation in the upper mantle. Nature, 449, 456-458 55. Scogby, H. (1994) OH incorporation in synthetic clinopyroxene. American Mineralogist, 79, 240-249 56. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H. and Wang, W. (2016) Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 35, 1403-1405 57. Sonin, V.M., Chepurov, A.I., Afanas'ev, V.P. and Zinchuk, N.N. (1998) Origin of the discoid sculptures on diamond crystals. Doklady Earth Sciences, 361, 635-637 58. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I. and Osorgin, N.Yu. (1997) Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P-T parameters. Geokhimiya, 4, 451-455 (in Russian with English abstract) 59. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., Tomilenko, A.A. and Chepurov, A.I. (2001) Etching of diamond crystals in a dry silicate melt at high P-T parameters. Geochemistry International, 39, 268-274 60. Sonin, V.M., Zhimulev, E.I., Tomilenko, A.A., Chepurov, S.A. and Chepurov, A.I. (2004) Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability. Geology of Ore Deposits, 46, 182-190 61. Stachel, T., Harris, J.W. and Brey, G.P. (1998) Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania. Contributions to Mineralogy and Petrology, 132, 34-47 62. Steward, A.J., Schmidt, M.W., Van Westrenen, W. and Liebske, C. (2008) Mars: A new core-crystallization regime. Science, 316, 1323-1325 63. Sunagawa, I., Tsukamoto, K. and Yasuda, T. (1984) Surface microtopographic and x-ray topographic study of octahedral crystals of natural diamond from Siberia. In Materials Science of the Earth's Interior (Sunagawa, I. Ed.). pp. 653, TERRAPUB, Tokyo, 331-349 64. Tappert, R., Foden, J., Stachel, T., Muenhlenbachs, K., Tappert, M. and Wills, K. (2009) The diamonds of South Australia. Lithos, 112S, 806-821 65. Tappert, R. and Tappert, M.C. (2011) Diamonds in Nature: A Guide to Rough Diamonds. pp. 142, Springer 66. Terasaki, H., Frost, D.J., Rubie, D.C. and Langenhorst, F. (2007) Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Physics of the Earth and Planetary Interior, 161, 170-176 67. Terasaki, H., Frost, D.J., Rubie, D.C. and Langenhorst, F. (2008) Percolative core formation in planetesimals. Earth and Planetary Science Letters, 273, 132-137 68. Tsuno, K. and Dasgupta, R. (2015) Fe-Ni-Cu-C-S phase relations at high pressures and temperatures-The role of sulfur in carbon storage and diamond stability at mid-to deep-upper mantle. Earth and Planetary Science Letters, 412, 132-142 69. Tsymbulov, L.B. and Tsemekhman, L.Sh. (2001) Solubility of carbon in sulfide melts of the system Fe-Ni-S. Russian Journal of Applied Chemistry, 74, 925-929 70. Ulmer, P. and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science, 268, 858-861 71. Wang, C., Hirama, J., Nagasaka, T. and Ban-Ya, S. (1991) Phase equilibria of liquid Fe-S-C ternary system. ISIJ International, 31, 1292-1299 72. Westerlund, K.J., Shirey, S.B., Richardson, S.H., Carlson, R.W., Gurney, J.J. and Harris, J.W. (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: Evidence from Re Os isotope systematic. Contributions to Mineralogy and Petrology, 152, 275-294 73. Win, N.N., Davies, R.M., Griffin, W.L., Wathanakul, P. and French, D.H. (2001) Distribution and characteristics of diamonds from Myanmar. Journal of Asian Earth Sciences, 19, 563-577 74. Wood, B.J. (1993) Carbon in the core. Earth and Planetary Science Letters, 117, 593-607 75. Wunder, B. and Schreyer, W. (1997) Antigorite: high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213-227 76. Zhang, Z., Lentsch, N. and Hirschmann, M.M. (2015) Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus. Contribution to Mineralogy and Petrology, 170, 47 77. Zhimulev, E.I., Chepurov, A.I., Sonin, V.M. and Pokhilenko, N.P. (2015) Migration of molten iron through an olivine matrix in the presence of carbon at high P-T parameters (experimental data). Doklady Earth Sciences, 463, 677-679 78. Zhimulev, E.I., Sonin, V.M., Mironov, A.M. and Chepurov, A.I. (2016a) Effect of sulfur concentration on diamond crystallization in the Fe-C-S system at 5.3-5.5 GPa and 1300-1370°C. Geochemistry International, 54, 415-422 79. Zhimulev, E.I., Sonin, V.M., Afanasiev, V.P., Chepurov, A.I. and Pokhilenko, N.P. (2016b) Fe-S melt as a likely solvent of diamond under mantle conditions. Doklady Earth Sciences, 471, 583-585