Инд. авторы: Chepurov A.A., Sonin V.M., Chepurov A.I., Tomilenko A.A.
Заглавие: The Effects of the Concentration of Olivine Xenocrysts on the Viscosity of Kimberlite Melts: Experimental Evidence
Библ. ссылка: Chepurov A.A., Sonin V.M., Chepurov A.I., Tomilenko A.A. The Effects of the Concentration of Olivine Xenocrysts on the Viscosity of Kimberlite Melts: Experimental Evidence // Journal of Volcanology and Seismology. - 2018. - Vol.12. - Iss. 2. - P.140-149. - ISSN 0742-0463. - EISSN 1819-7108.
Внешние системы: DOI: 10.1134/S0742046318020033; РИНЦ: 35510355; SCOPUS: 2-s2.0-85047400189; WoS: 000433123900006;
Реферат: eng: The study of viscosity in sub-liquidus heterogeneous media, which includes kimberlite magma at the pressures and temperatures that prevail in the mantle, is an urgent task. We have conducted experiments in the serpentine–olivine, serpentine–CaCO3‒olivine, and native kimberlite–olivine systems at a pressure of 4 GPa and temperatures of 1400‒1600°С in a BARS high-pressure device using the technique of a falling Pt pellet. The samples were examined after experiments to find fine-grained chilled mass of crystals where the Pt pellet was observed at the time of chilling. The concentration of the solid phase was varied in the experiments between 10 and 50 wt %. We showed that when 50 wt % of olivine grains has been introduced, it was not possible to detect the motion of the Pt pellet, while when the concentration of olivine xenocrysts reached 10 wt %, the Pt pellet very rapidly descended to the bottom of the reaction volume. Viscosity was calculated using the Stokes method. We found that the viscosity of a homogeneous kimberlite melt at 4 GPa and 1600°С is below 2 Pa s, with the viscosity of a melt that contained up to 10 wt % of the solid phase being approximately constant. A kimberlite melt that contained 30 wt % of the solid phase had a viscosity on the order of 100 Pa s, while with 50 wt % of the solid phase the relative viscosity of an ultrabasic system increased to reach values over 1000 Pa s. © 2018, Pleiades Publishing, Ltd.
Ключевые слова: concentration (composition); experimental study; xenolith; viscosity; olivine; kimberlite; heterogeneous medium;
Издано: 2018
Физ. характеристика: с.140-149
Цитирование: 1. Ardia, P., Giordano, D., and Schmidt, M.W., A model for the viscosity of rhyolite as a function of H2O-content and pressure: A calibration based on centrifuge piston cylinder experiments, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 6103–6123. 2. Bouhifd, M.A., Richet, P., Besson, P., et al., Redox state, microstructure and viscosity of partially crystallized basalt melt, Earth Planet. Sci. Lett., 2004, vol. 218, pp. 31–44. 3. Brett, R.C., Russell, J.K., and Moss, S., Origin of olivine in kimberlite: Phenocryst or impostor? Lithos, 2009, vol. 112S, pp. 201–212. 4. Brey, G.P. and Ryabchikov, I.D., Carbon dioxide in strongly silica undersaturated melts and origin of kimberlite magmas, N. Jarb. Mineral. Monatsh., 1994, vol. 10, pp. 449–463. 5. Brown, R.J., Buse, B., Sparks, R.S.J., and Field, M., On the welding of pyroclasts from very low-viscosity magmas: Examples from kimberlite volcanoes, J. Geology, 2008, vol. 116(4), pp. 354–374. 6. Caricchi, L., Burlini, L., Ulmer, P., et al., Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics, Earth Planet. Sci. Lett., 2007, vol. 264, pp. 402–419. 7. Chepurov, A.I., Sonin, V.M., Surkov, N.V., et al., The project of experimental station of synchrotron radiation in VEPP-4M4 for research at high pressures and high temperatures on the multiple anvil apparatus BARS, Nuclear Instruments and Methods in Physics Research A, 2009, vol. 603, pp. 105–107. 8. Castruccio, A., Rust, A.C., and Sparks, R.S.J., Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents, Earth Planet. Sci. Lett., 2010, vol. 297, pp. 471–480. 9. Dawson, J.B., Kimberlites and Their Xenoliths, New York: Springer Verlag, 1980. 10. Chepurov, A.I., Zhimulev, E.I., Agafonov, L.V., et al., The stability of ortho-and clinopyroxenes, olivine, and garnet in kimberlitic magma, Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 406–415. 11. Chepurov, A.I., Zhimulev, E.I., Sonin, V.M., et al., Experimental Estimation of the Rate of gravitation fractionating of xenocrysts in kimberlite magma at high P-T parameters, Dokl. Earth Sci., 2011, vol. 440, no. 2, pp. 1427–1430. 12. Chepurov, A.I., Fedorov, I.I., and Sonin, V.M., Experimental studies of diamond formation at high PTparameters (supplement to the model for natural diamond formation), Geol. Geofiz., 1998, vol. 39, no. 2, pp. 234–244. 13. Chepurov, A.I., Sonin, V.M., Kirdyashkin, A.A., and Zhimulev, E.I., Use of a pressless multianvil high-pressure split-sphere apparatus to measure the silicate melt viscosity, J. Appl. Mech. Tech., 2009, vol. 50, no. 5, pp. 826–830. 14. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., et al., The conservation of an aqueous fluid in inclusions in minerals and their interstices at high pressures and temperatures during the decomposition of antigorite, Russ. Geol. Geophys., 2012, vol. 53, no. 3, pp. 234–246. 15. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., et al., Problem of water in the upper mantle: Antigorite breakdown, Dokl. Earth Sci., 2010, vol. 434, no. 1, pp. 1275–1278. 16. Dawson, J.B. and Hawthorne, J.B., Intrusion features of some hypabyssal South African kimberlites, Bulletin of Volcanology, 1969, vol. 34(3), pp. 740–757. 17. Dingwell, D.B. and Mysen, D.O., Effects of water and fluorine on the viscosity of albite melts at high pressure: A preliminary investigation, Earth Planet. Sci. Lett., 1985, vol. 74, pp. 266–274. 18. Dingwell, D.B., Courtial, P., Giordano, D., and Nichols, A.R.L., Viscosity of peridotite liquid, Earth Planet. Sci. Lett., 2004, vol. 226, pp. 127–138. 19. Dreibus, G., Brey, G.P., and Girnis, A.V., The role of carbon dioxide in the generation and emplacement of kimberlite magmas: New experimental data on CO2 solubility, in Extended Abstracts 6th International Kimberlite Conference, 1995, pp. 80–82. 20. Gernon, T.M., Gilbertson, M.A., Sparks, R.S.J., and Field, M., The role of gas-fluidization in the formation of massive volcaniclastic kimberlite, Lithos, 2009, vol. 1125, pp. 439–451. 21. Giordano, D., Romano, C., Dingwell, D.B., et al., The combined effects of water and fluorine on the viscosity of silicic magmas, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5159–5168. 22. Giordano, D., Potuzak, M., Romano, C., et al., Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8 -CaMgSi2O6, Chemical Geology, 2008a, vol. 256, pp. 203–215. 23. Giordano, D., Russell, J.K., and Dingwell, D.B., Viscosity of magmatic liquids: A model, Earth Planet. Sci. Lett., 2008b, vol. 271, pp. 123–134. 24. Girnis, A.V., Bulatov, B.K., and Brey, G.P., Transition of kimberlite melts into carbonatite melts at mantle parameters: experimental study, Petrology, 2005, vol. 13(1), pp. 3–8. 25. Hammouda, T. and Laporte, D., Ultrafast mantle impregnation by carbonatite melts, Geology, 2000, vol. 28, pp. 283–285. 26. Hess, K.U. and Dingwell, D.G., Viscosities of hydrous leucogranitic melts: A non-Arrhenian model, American Mineralogist, 1996, vol. 81, pp. 1297–1300. 27. Hobiger, M., Sonder, I., Buttner, R., and Zimanowski, B., Viscosity characteristics of selected volcanic rock melts, J. Volcanology and Geothermal Res., 2011, vol. 200, pp. 27–34. 28. Ishibashi, H. and Sato, H., Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan, J. of Volcanology and Geothermal Res., 2007, vol. 160, pp. 223–238. 29. Kavanagh, J.L. and Sparks, R.S.J., Temperature changes in ascending kimberlite magma, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 404–413. 30. Kennedy, C.S. and Kennedy, G.C., The equilibrium boundary between graphite and diamond, J. Geophys. Res., 1976, vol. 81(14), pp. 2467–2470. 31. Kopylova, M.G., Matveev, S., and Raudsepp, M., Searching for parental kimberlite melt, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3616–3629. 32. Kushiro, I., Yoder, J.R., and Mysen, B.O., Viscosities of basalt and andesite melts at high pressures, J. Geophys. Res., 1976, vol. 81(35), pp. 6351–6356. 33. Lacks, D.J., Rear, D.B., and Orman, J.A.V., Molecular dynamics investigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO–SiO2 join as functions of pressure, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1312–1323. 34. Lejeune, A.M. and Richet, P., Rheology of crystal-bearing silicate melts: An experimental study at high viscosities, J. Geophys. Res., 1995, vol. 100, pp. 4215–4229. 35. Lejeune, A.M., Bottinga, Y., Trull, T.W., and Ritchet, P., Rheology of bubble bearing magmas, Earth Planet. Sci. Lett., 1999, vol. 166(1-2), pp. 71–84. 36. Liebske, C., Behrens, H., Holtz, F., and Lange, R.A., The influence of pressure and composition on the viscosity of andesitic melts, Geochim. et Cosmochim. Acta, 2003, vol. 67, pp. 473–485. 37. Liebske, C., Schmickler, B., Terasaki, H., et al., Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 589–604. 38. Marsh, B.D., On the crystallinity, probability of occurrence, and rheology of lava and magma, Contributions to Mineralogy and Petrology, 1981, vol. 78, pp. 85–98. 39. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology, N. Y.: Plenum Press, 1986. 40. Mitchell, R.H., Petrology of hypabyssal kimberlites: Relevance to primary magma compositions, J. of Volcanology and Geothermal Res., 2008, vol. 174, pp. 1–8. 41. Moss, S., Russell, J.K., Brett, R.C., and Andrews, G.D.M., Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada, Lithos, 2009, vol. 112, pp. 541–552. 42. Patterson, M., Francis, D., and McCandless, T., Kimberlites: Magmas or mixtures? Lithos, 2009, vol. 112S, pp. 191–200. 43. Persikov, E.S., The viscosity of magmatic liquids: experiment, generalized patterns. A model for calculation and prediction, Applications, Advances in Physical Chemistry, 1991, vol. 9, pp. 1–4. 44. Persikov, E.S. and Bukhtiyarov, P.G., The effect of dissolved water on the time-dependent viscosity of kimberlite and basaltic magmas during their origination, evolution, and ascent from mantle to crust, Eksperimental’naya Geokhimiya, 2014, vol. 2, no. 2, pp. 236–240. 45. Petford, N., Which effective viscosity? Mineralogical Magazine, 2009, vol. 73(2), pp. 167–191. 46. Pinkerton, H. and Stevenson, R.J., Methods of determining the rheological properties of magmas at sub-liquidus temperatures, J. of Volcanology and Geothermal Res., 1992, vol. 53, pp. 47–66. 47. Poe, B.T., Romano, C., Liebske, C., et al., High-temperature viscosity measurements of hydrous albite liquid using in-situ falling-sphere viscometry at 2.5 GPa, Chemical Geology, 2006, vol. 229, pp. 2–9. 48. Price, S.E., Russell, J.K., and Kopylova, M.G., Primitive magma from the Jericho Pipe, N. W. T., Canada: Constrains on primary kimberlite melt chemistry, J. Petrology, 2000, vol. 41, pp. 789–808. 49. Priestley, K., McKenzie, D.O., and Debayle, E., The state of the upper mantle beneath southern Africa, Tectonophysics, 2006, vol. 416, pp. 101–112. 50. Reid, J.E., Suzuki, A., Funakoshi, K., et al., The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa, Physics of the Earth and Planet. Interior, 2003, vol. 139, pp. 45–54. 51. Richet, P., Lejeune, A.M., Holtz, F., and Roux, J., Water and the viscosity of andesite melts, Chemical Geology, 1996, vol. 128, pp. 185–197. 52. Romano, C., Poe, B.T., Mincione, V., et al., The viscosity of dry and hydrous XAlSi3O8 (X = Li, Na, K, Ca0.5Mg0.5) melts, Chemical Geology, 2001, vol. 174, pp. 115–132. 53. Roscoe, R., The viscosity of suspensions of rigid spheres, British J. of Applied Physics, 1952, vol. 3, pp. 267–269. 54. Saar, M.O. and Manga, M., Continuum percolation for randomly oriented soft-core prisms, Physical Review E, 2002, vol. 65, pp. 1–6. 55. Sakamaki, T., Ohtani, E., Urakawa, S., et al., Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method, Earth and Planet. Sci. Lett., 2009, vol. 287, pp. 293–297. 56. Sato, H., Viscosity measurement of sub-liquidus magmas: 1707 basalt of Fuji volcano, J. Mineral. Petrol. Sci., 2005, vol. 100, pp. 133–142. 57. Shaw, H.R., Obsidian–H2O viscosities at 100 and 200 bars in the temperature range 700 to 900°C, J. Geophys. Res., 1963, vol. 68, pp. 6337–6342. 58. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., et al., Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution, Russ. Geol. Geophys., 2015, vol. 56, nos. 1-2, pp. 260–279. 59. Sparks, R.S.J., Baker, L., Brown, R.J., et al., Dynamic constraints on kimberlite volcanism, J. of Volcanology and Geothermal Res., 2006, vol. 155, pp. 18–48. 60. Sparks, R.S.J., Brooker, R.A., Field, M., et al., The nature of erupting kimberlite melts, Lithos, 2009, vol. 112, pp. 429–438. 61. Vetere, F., Behrens, H., Holtz, F., and Neuville, D.R., Viscosity of andesite melts—new experimental data and a revised calculation model, Chemical Geology, 2006, vol. 228(4), pp. 233–245.