Цитирование: | 1. Audétat, A., Günther, D., Heinrich, C.A., Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science 279 (1998), 2091–2094.
2. Bilibina, T.V., Donakov, V.I., Titov, V.K., About hydrothermal uranium mineralization associated with alkaline intrusive complexes. Geol. Ore Deposits 5 (1963), 35–54.
3. Biryukov, V.M., Berdnikov, N.V., About the paragenetic connection of charoite mineralization with alkaline metasomatism. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva 121:B-6 (1992), 59–76.
4. Bodnar R.J., Vityk M.O., 1994. Interhretations of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B., Ferozzotti M.L. (Eds.), Fluid inclusions in Minerals, Metods and Applications, publ. by Verginia Tech, Blacksburg, VA. 117–130.
5. Borisenko, A.S., Borovikov, A.A., Vasyukova, E.A., Pavlova, G.G., Ragozin, A.L., Prokopev, I.R., Vladykin, N.V., Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ. Geol. Geophys. 52:1 (2011), 144–164.
6. Borovikov, A.A., Bul'bak, T.A., Borisenko, A.S., Ragozin, A.L., Palesskii, S.V., The behavior of ore elements in oxidized heterophase chloride and carbonate-chloride-sulfate fluids of porphyry Cu-Mo(Au) deposits (from experimental data). Russ. Geol. Geophys. 56:3 (2015), 435–445.
7. Borovikov, A.A., GoverdovskiyV, A., Borisenko, A.S., Bryanskiy, N.V., Shabalin, S.I., Composition and metal contents of ore-forming fluids of the Kalguty Mo-W(Be) deposit (Gorny Altai). Russ. Geol. Geophys. 57:4 (2016), 507–518.
8. Bullach, A.G., To the genesis of charoite. Zapiski Vserosoyuznogo Mineralogicheskogo Obshchestva 113:2 (1984), 226–228.
9. Günther, D., Heinrich, C.A., Enhanced sensitivity in laser ablation ICP-mass-spectrometry using helium-argon mixtures as aerosol carrier. J. Anal. Atomic Spectrosc. 14 (1999), 1363–1368.
10. Günther, D., Frischknecht, R., Heinrich, C.A., Kahlert, H.-J., Capabilities of an argon fluoride 193 nm Excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J. Anal. Atomic Spectrosc. 12 (1997), 939–944.
11. Günther, D., Audétat, A., Frischknecht, R., Heinrich, C.A., Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). J. Anal. Atomic Spectrosc. 13 (1998), 263–270.
12. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M., Horn, I., Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 67 (2003), 3473–3497.
13. Kogan, V.B., Ogorodnikov, S.K., Kafarov, V.V., 1969. Triple and multi-component systems formed by inorganic substances, In: Kafarov, V.V. (Ed.), Handbook of Solubility, 3, 2, pp 626–629 (in Russian).
14. Konev, A.A., Vorobyov, E.I., Lazebnik, K.A., 1996. Mineralogy of the Murunskiy alkaline massif. In: Feoktistov, G.D. (Ed.). Novosibirsk, p 221.
15. Longerich, H.P., Jackson, S.E., Günther, D., Laser ablation inductively coupled plasma mass-spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atomic Spectrosc. 11:9 (1996), 899–904.
16. Maximov, E.P., Nikitin, V.M., Uyutov, V.I., The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russian Journal of Pacific Geology 4:2 (2010), 95–115.
17. Nikolaeva, I.V., Palesskii, S.V., Kozmenko, O.A., Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 46:10 (2008), 1016–1022.
18. Panina, L.I., Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Int. 46:5 (2008), 448–464.
19. Prokofiev, V.Y., Vorobiev, E.I., P-T-conditions for the formation of the strontium-barium carbonatite, the charoitic rock and the torgalite of the Murunskiy alkaline massif (Eastern Siberia). Geochem. Int. 10 (1991), 1444–14459.
20. Reyf, F.G., Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Mineral. Deposita 32 (1997), 475–490.
21. Roedder, E., 1984. Interpretation and Utilization of Inclusion Measurements – Compositional Data on Liquid and Gas Inclusions. In: Paul H. Ribbe (Ed.), Fluid Inclusions. Rev. Mineral., 12, 8, pp 221–250, doi: 10.2138/rmg.1984.12.8.
22. Rogova, V.P., 1980. Conditions for the formation of charoite rock. In: Savkevich, S.S. (Ed.), Samotzvtu. Gem Minerals: Proceedings of the XI general meeting of IMA (Novosibirsk, 4–10 september, 1978). Leningrad, Nauka, pp. 79–87.
23. Ulrich, T., Günther, D., Heinrich, C.A., The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ. Geol. 96 (2001), 1743–1774.
24. Valyashko, V.M., 2004. Chapter 15 – Phase equilibria of water-salt systems at high temperatures and pressures, In: Donald A. Palmer, Roberto Fernández-Prini, Allan H. Harvey (Eds.), Aqueous Systems at Elevated Temperatures and Pressures, Physical Chemistry in Water, Steam and Hydrothermal Solutions, pp. 597–641, doi: 10.1016/B978-012544461-3/50016-8.
25. Vladykin, N.V., Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russ. Geol. Geophys. 50:12 (2009), 1119–1128.
26. Vorobyev, E.I. 2008. In: Charoit. Zorina L.D. (Ed.), Novosibirsk, 140.
27. Vorobyev, E.I., Konyev, A.A., Malyshok, Y.V., Afonina, G., Sapozhnikov, F., Tausonite SrTiO3, a new mineral of the perovskite group. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva 113 (1984), 83–89.
|