Цитирование: | 1. Ringwood AE., Origin of the Earth and Moon. New York (NY): Springer; 1979.
2. Guyot F., Earth’s innermost secrets. Nature. 1994;369:360–361. doi: 10.1038/369360a0
3. Wood BJ, Walter MJ, Wade J., Accretion of the Earth and segregation of its core. Nature. 2006;441:825–833. doi: 10.1038/nature04763
4. Javoy M, Kaminski E, Guyot F, et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett. 2010;293:259–268. doi: 10.1016/j.epsl.2010.02.033
5. Palme H, O’Neill HSC., Cosmochemical estimates of mantle composition. Treatise Geochem. 2003;2:1–38.
6. Poirier JP., Light elements in the Earth’s outer core: A critical review. Phys Earth Planet Inter. 1994;85:319–337. doi: 10.1016/0031-9201(94)90120-1
7. Campbell AJ, Seagle CT, Heinz DL, et al. Partial melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study. Phys Earth Planet Inter. 2007;162:119–128. doi: 10.1016/j.pepi.2007.04.001
8. Steward AJ, Schmidt MW, Van Westrenen W, et al. Mars: A new core-crystallization regime. Science. 2008;316:1323–1325. doi: 10.1126/science.1140549
9. Lodders K., Solar system abundance and condensation temperatures of the elements. Astrophys J. 2003;591:1220–1242. doi: 10.1086/375492
10. Chepurov AI, Sonin VM, Zhimulev EI, et al. On the formation of element carbon during decomposition of CaCO3at high P-T parameters under reducing conditions. Doklady Earth Sci. 2011;441(2):1738–1741. doi: 10.1134/S1028334X11120233
11. Hillgren VJ, Gessmann CK, Li J., An experimental perspective on the light element in the Earth’s core. In: Canup RM, Righter K, editors. Origin of the Earth and Moon. Tucson: The University of Arizona Press; 2000.
12. Wood BJ, Li J, Shahar A., Carbon in the core: Its influence on the properties of core and mantle. Rev Mineral Geochem. 2013;75:231–250. doi: 10.2138/rmg.2013.75.8
13. Berkley JL, Taylor GJ, Keil K, et al. The nature and origin of ureilites. Geochim Cosmochim Acta. 1980;44:1579–1597. doi: 10.1016/0016-7037(80)90119-2
14. Kerridge JF., Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim Cosmochim Acta. 1985;49:1707–1714. doi: 10.1016/0016-7037(85)90141-3
15. Dreibus G, Palme H., Cosmochemical constrains on the sulphur content in the Earth’s core. Geochim Cosmochim Acta. 1995;60:1125–1130. doi: 10.1016/0016-7037(96)00028-2
16. McDonough W., Compositional model for the Earth’s core. Treatise Geochem. 2003;2:568.
17. Chabot NL., Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochim Cosmochim Acta. 2004;68:3607–3618. doi: 10.1016/j.gca.2004.03.023
18. Wade J, Wood BJ., Core formation and oxidation state of the Earth. Earth Planet Sci Lett. 2005;236:78–95. doi: 10.1016/j.epsl.2005.05.017
19. Huang H, Fei Y, Cai L, et al. Evidence for an oxygen-depleted liquid outer core of the Earth. Nature. 2011;479:513–516. doi: 10.1038/nature10621
20. Terasaki H, Frost DJ, Rubie DC, et al. Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys Earth Planet Inter. 2007;161:170–176. doi: 10.1016/j.pepi.2007.01.011
21. Terasaki H, Frost DJ, Rubie DC, et al. Percolative core formation in planetesimals. Earth Planet Sci Lett. 2008;273:132–137. doi: 10.1016/j.epsl.2008.06.019
22. Terasaki H, Frost DJ, Rubie DC, et al. The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet Sci Lett. 2005;232:379–392. doi: 10.1016/j.epsl.2005.01.030
23. Shannon MC, Agee CB., Percolation of core melts at lower mantle conditions. Science. 1998;280:1059–1061. doi: 10.1126/science.280.5366.1059
24. Golabek GJ, Schmeling H, Tackley PJ., Earth’s core formation aided by flow channeling instabilities induced by iron diapirs. Earth Planet Sci Lett. 2008;271:24–33. doi: 10.1016/j.epsl.2008.02.033
25. Zhimulev EI, Chepurov AI, Sonin VM, et al. Migration of molten iron through an olivine matrix in the presence of carbon at high P-T parameters (experimental data). Doklady Earth Sci. 2015;463(1):677–679. doi: 10.1134/S1028334X15070065
26. Chepurov AI, Fedorov II, Sonin VM., Experimental study of diamond formation at high P-T parameters. Geol Geofiz. 1998;39(2):234–244.
27. Chepurov AI, Tomilenko AA, Zhimulev EI, et al. The conservation of an aqueous fluid in inclusions in minerals and their interstices at high P-T parameters during the decomposition of antigorite. Rus Geol Geophys. 2012;53:305–320. doi: 10.1016/j.rgg.2012.02.002
28. Tomilenko AA, Chepurov AI, Sonin VM, et al. The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200°C. High Temp–High Press. 2015;44:451–465.
29. Decker DL, Basset WA, Merrill L, et al. High-pressure calibration a critical review. J Phys Chem Ref Data. 1972;1:1–79. doi: 10.1063/1.3253105
30. Van Bargen N, Waffs HS., Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res. 1986;91:9261–9276. doi: 10.1029/JB091iB09p09261
31. Usselman T., Experimental approach to the state of the core: Part 1. The liquids relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kbar. Am J Sci. 1975;275:278–290. doi: 10.2475/ajs.275.3.278
32. Dasgupta R, Buono A, Whelan G, et al. High-pressure melting relations in Fe-C-S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim Cosmochim Acta. 2009;73:6678–6691. doi: 10.1016/j.gca.2009.08.001
33. Chabot NL, Campbell AJ, McDonough WF, et al. The Fe-C system at 5 GPa and implications for Earth’s core. Geochim Cosmochim Acta. 2008;72:4146–4158. doi: 10.1016/j.gca.2008.06.006
34. Komabayashi T., Thermodynamic of melting relations in the system Fe-FeO at high pressure: implication for oxygen in the Earth’s core. J Geophys Res Solid Earth. 2014;119:4164–4177. doi: 10.1002/2014JB010980
35. San-Martin A, Manchester F., The Fe-H (iron-hydrogen) system. Bull Alloy Phase Diagr. 1990;11:173–184. doi: 10.1007/BF02841704
36. Okuchi T., Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science. 1997;278:1781–1784. doi: 10.1126/science.278.5344.1781
37. Roskosz M, Bouhifd MA, Jephcoat AP, et al. Nitrogen solubility in metal and silicate at high pressire and temperature. Geochim Cosmochim Acta. 2013;121:15–28. doi: 10.1016/j.gca.2013.07.007
38. Stevenson DJ., Fluid dynamics of core formation. In: Newsom HE, Drake JH, editors. Origin of the Earth. New York (NY): Oxford University Press; 1990.
39. Artini C, Muolo ML, Passerone A., Diamond-metal interfaces in cutting tools: a review. J Mater Sci. 2012;47:3252–3264. doi: 10.1007/s10853-011-6164-6
40. Chepurov AI, Sonin VM, Dereppe J-M., The channeling action of iron particles in the catalyzed hydrogenation of synthetic diamond. Diamond Relat Mater. 2000;9:1435–1438. doi: 10.1016/S0925-9635(00)00256-9
41. Chepurov AI, Sonin VM, Shamaev PP, et al. The action of iron particles at catalyzed hydrogenation of natural diamond. Diamond Relat Mater. 2002;11:1592–1596. doi: 10.1016/S0925-9635(02)00106-1
42. Sonin VM, Chepurov AI, Fedorov II., The action of iron particles at catalyzed hydrogenation of {100} and {110} faces of synthetic diamond. Diamond Relat Mater. 2003;12:1559–1562. doi: 10.1016/S0925-9635(03)00242-5
43. Walter MJ, Kohn SC, Araujo D, et al. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science. 2011;334:54–57. doi: 10.1126/science.1209300
44. Wirth R, Dobrzhinetskaya L, Harte B, et al. High-Fe(Mg,Fe)O inclusions in diamond apparently from the lowermost mantle. Earth Planet Sci Lett. 2014;404:365–375. doi: 10.1016/j.epsl.2014.08.010
45. Chepurov AI, Fedorov II, Sonin VM, et al. Diamond formation during reduction of oxide- and silicate-carbon systems at high P-T conditions. Eur J Mineral. 1999;11:355–362. doi: 10.1127/ejm/11/2/0355
46. Kaminsky FV, Wirth R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral. 2011;49:555–572. doi: 10.3749/canmin.49.2.555
47. Frost D, McCammon CA., The redox state of Earth`s mantle. Ann Rev Earth Planet Sci. 2008;36:389–420. doi: 10.1146/annurev.earth.36.031207.124322
48. Frost DJ, Liebske C, Langenhorst F, et al. Experimental evidence for the existence of iron-rich metal in the Earth`s lower mantle. Nature. 2004;428:409–412. doi: 10.1038/nature02413
49. Smith EM, Shirey SB, Nestola F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016;354:1403–1405. doi: 10.1126/science.aal1303
50. Jakubowski T, Karczemska A, Kozanecki M., Diamond in ureilites. Meteorites. 2011;0:3–8.
51. Rubie DC, Melosh HJ, Reid JE, et al. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth and Planet Sci Lett. 2003;205:239–255. doi: 10.1016/S0012-821X(02)01044-0
52. Karato SI, Murthy VR., Core formation and chemical equilibrium in the Earth. Part I: Physical considerations. Phys Earth Planet Inter. 1997;100:61–79. doi: 10.1016/S0031-9201(96)03232-3
53. Rubie DC, Nimmo F, Melosh HJ., Formation of the Earth’s core. In: Stevenson D, editor. Treatise on geophysics. V. 9-Evolution of the Earth. Amsterdam: Elsevier; 2007.
54. Zhimulev EI, Sonin VM, Mironov AM, et al. Effect of sulfur concentration of diamond crystallization in the Fe-S-C system at 5.3–5.5 GPa and 1300–1370°C. Geochem Int. 2016;54(5):415–422. doi: 10.1134/S0016702916050116
|