Инд. авторы: Lozanov V.V., Baklanova N.I., Bulina N.V., Titov A.T.
Заглавие: New Ablation-Resistant Material Candidate for Hypersonic Applications: Synthesis, Composition, and Oxidation Resistance of HfIr3-Based Solid Solution
Библ. ссылка: Lozanov V.V., Baklanova N.I., Bulina N.V., Titov A.T. New Ablation-Resistant Material Candidate for Hypersonic Applications: Synthesis, Composition, and Oxidation Resistance of HfIr3-Based Solid Solution // ACS Applied Materials and Interfaces. - 2018. - Vol.10. - Iss. 15. - P.13062-13072. - ISSN 1944-8244.
Внешние системы: DOI: 10.1021/acsami.8b01418; РИНЦ: 35499366; SCOPUS: 2-s2.0-85045661120; WoS: 000430642100103;
Реферат: eng: The peculiarities of the solid-state interaction in the HfC-Ir system have been studied within the 1000-1600 °C temperature range using a set of modern analytical techniques. It was stated that the interaction of HfC with iridium becomes noticeable at temperatures as low as 1000-1100 °C and results in the formation of HfIr3-based substitutional solid solution. The homogeneity range of the HfIr3±x phase was evaluated and refined as HfIr2.43-HfIr3.36. The durability of the HfIr3-based system under extreme environmental conditions was studied. It was shown that the HfIr3-based material displays excellent ablation resistance under extreme environmental conditions. The benefits of the new designed material result from its relative oxygen impermeability and special microstructure similar to superalloys. The results obtained in this work allow us to consider HfIr3 as a very promising candidate for extreme applications. © 2018 American Chemical Society.
Ключевые слова: Temperature range; Substitutional solid solutions; Solid-state interactions; Material candidate; Hafnium carbide; Extreme applications; Environmental conditions; Ablation resistance; Solid state reactions; Solid solutions; Oxidation resistance; Intermetallics; Hafnium compounds; Carbides; Binary alloys; Ablation; solid-state reaction; iridium; intermetallics; hafnium carbide; ablation resistance; Iridium; Iridium alloys;
Издано: 2018
Физ. характеристика: с.13062-13072
Цитирование: 1. Opeka, M. M.; Talmy, I. G.; Zaykoski, J. A. Oxidation-based materials selection for 2000°C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 2004, 39, 5887-5904, 10.1023/b:jmsc.0000041686.21788.77 2. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications; Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E., Zhou, Y., Eds.; Wiley: Hoboken, NJ, 2014. 3. Kazenas, E. K.; Tsvetkov, J. V. The Evaporation of Oxides; Nauka: Moscow, 1997 4. Lozanov, V. V.; Baklanova, N. I.; Shayapov, V. R.; Berezin, A. S. Crystal growth and photoluminescence properties of reactive CVD-derived monoclinic hafnium dioxide. Cryst. Growth Des. 2016, 16, 5283-5293, 10.1021/acs.cgd.6b00824 5. Shimada, S.; Yunazar, F.; Otani, S. Oxidation of hafnium carbide and titanium carbide single crystals with the formation of carbon at high temperatures and low oxygen pressures. J. Am. Ceram. Soc. 2004, 83, 721-728, 10.1111/j.1151-2916.2000.tb01265.x 6. Bargeron, C. B.; Benson, R. C.; Jette, A. N.; Phillips, T. E. Oxidation of hafnium carbide in the temperature range 1400 to 2060 °C. J. Am. Ceram. Soc. 1993, 76, 1040-1046, 10.1111/j.1151-2916.1993.tb05332.x 7. Courtright, E. L.; Prater, J. T.; Holcomb, G. R.; Pierre, G. R. St.; Rapp, R. A. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium. Oxid. Met. 1991, 36, 423-437, 10.1007/bf01151590 8. Sha, J. B.; Yamabe-Mitarai, Y. Ir-Hf-Zr ternary refractory superalloys for ultra-high temperatures-Phase and microstructural constitution. Intermetallics 2013, 41, 1-9, 10.1016/j.intermet.2013.04.012 9. Sha, J. B.; Yamabe-Mitarai, Y. Ultra-high strength of Ir-Hf-Nb ternary alloys with an fcc/L12 mictostructure at 1950°C. Intermetallics 2013, 32, 145-150, 10.1016/j.intermet.2012.07.034 10. Yamabe-Mitarai, Y.; Gu, Y.; Huang, C.; Völkl, R.; Harada, H. Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM 2004, 56, 34-39, 10.1007/s11837-004-0198-z 11. Yamabe-Mitarai, Y.; Ro, R.; Harada, H.; Maruko, T. Ir-base refractory superalloys for ultra-high temperatures. Metall. Mater. Trans. A 1998, 29, 537-549, 10.1007/s11661-998-0135-9 12. Yamabe-Mitarai, Y.; Murakami, H. Mechanical properties at 2223 K and oxidation behavior of Ir alloys. Intermetallics 2014, 48, 86-92, 10.1016/j.intermet.2013.09.014 13. Cornish, L. A.; Fischer, B.; Völkl, R. Development of platinum-group-metal superalloys for high-temperature use. MRS Bull. 2003, 28, 632-638, 10.1557/mrs2003.190 14. Halevy, I.; Salhov, S.; Winterrose, M. L.; Broide, A.; Yue, A. F.; Robin, A.; Yeheskel, O.; Hu, J.; Yaar, I. High pressure study and electronic structure of the super-alloy HfIr3. J. Phys.: Conf. Ser. 2010, 215, 012012, 10.1088/1742-6596/215/1/012012 15. Ohriner, E. K. Rhenium and Iridium; Report CONF-970201-6; Oak Ridge National Laboratory: Oak Ridge, Tennessee, USA, 1996; p 17. https://www.osti.gov/scitech/servlets/purl/443185. 16. Harding, J. T.; Fry, V.; Tuffias, R. H.; Kaplan, R. B. Oxidation Resistance of CVD Coatings; Final report AFRPL TR-86-099; Air Force Space Technology Center Space Division: California, USA, 1987; p 29. http://www.dtic.mil/dtic/tr/fulltext/u2/a178337.pdf. 17. Pierre, G. St. Explanatory Research on the Protection of Carbon-Carbon Composites Against Oxidation at Very High Temperatures (∗3000 °F) with Engel-Brewer and Other Intermetallic Compounds; Final report AD-A207 907; The Ohio State University: Ohio, USA, 1988; p 204. http://www.dtic.mil/dtic/tr/fulltext/u2/a207907.pdf. 18. Kwon, J.-W. Formation and growth of Ir3Hf layers at Ir/HfC interfaces between 1900°C and 2200°C. Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1989, 153 p. 19. Hsia, C. Mechanisms and rate of solid state diffusion in iridium-hafnium intermetallic compound (Ir3Hf) and calcium sulfate. Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1993, 206 p. 20. Ramesh, G. V.; Kodiyath, R.; Tanabe, T.; Manikandan, M.; Fujita, T.; Umezawa, N.; Ueda, S.; Ishihara, S.; Ariga, K.; Abe, H. Stimulation of electro-oxidation catalysis by bulk-structural transformation in intermetallic ZrPt3 nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 16124-16130, 10.1021/am504147q 21. Yang, X. F.; Xu, W.; Li, M.; Koel, B. E.; Chen, J. G. A new class of electrocatalysts of supporting Pt on an Engel-Brewer alloy substrate: a demonstration for oxidation of ethylene glycol. Chem. Commun. 2014, 50, 12981-12984, 10.1039/c4cc04006f 22. Wang, H.; Carter, E. A. Metal-metal bonding in Engel-Brewer intermetallics: "Anomalous" charge transfer in zirconium-platinum (ZrPt3). J. Am. Chem. Soc. 1993, 115, 2357-2362, 10.1021/ja00059a034 23. Gibson, J. K.; Brewer, L.; Gingerich, K. A. Thermodynamics of several Lewis-acid-base stabilized transition metal alloys. Metall. Mater. Trans. A 1984, 15, 2075-2085, 10.1007/bf02646841 24. Strife, J. R.; Smeggil, J. G.; Worrell, W. L. Reaction of iradium with metal carbides in the temperature range of 1923 to 2400 K. J. Am. Ceram. Soc. 1990, 73, 838-845, 10.1111/j.1151-2916.1990.tb05123.x 25. Mercuri, R. A.; Criscione, J. M. The reaction of iridium and rhodium with refractory carbides and borides. Abstr. Papers, 158th Mtg, Am. Chem. Soc., 1969. Platinum Metals Review, 1970; Vol. 14 (1), p 31. 26. Holleck, H.. Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen; Habilitationsschrift KfK-3087B; Institut für Material und Festkörperforschung: Kernforschungszentrum Karlsruhe, Deutschland, 1981; p 358. https://publikationen.bibliothek.kit.edu/200015609. 27. Lozanov, V. V.; Baklanova, N. I.; Morozova, N. B. Gas-phase deposition of complex high-melting coatings on carbon fiber material. J. Struct. Chem. 2015, 56, 900-906, 10.1134/s002247661505011x 28. Lozanov, V. V., Baklanova, N. I.. Physico-chemical study of formation of iridium-based intermetallics. Abstr. Papers, 21st Int. Chernyaev Conf., 2016; p 78 (in Russian). http://chernyaev2016.ru/upload/iblock/files/tezisi%20CHK.pdf. 29. Gasch, M.; Johnson, S. Physical characterization and arcjet oxidation of hafnium-based ultra high temperature ceramics fabricated by hot pressing and field-assisted sintering. J. Eur. Ceram. Soc. 2010, 30, 2337-2344, 10.1016/j.jeurceramsoc.2010.04.019 30. Cheary, R. W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109-121, 10.1107/s0021889891010804 31. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126-1128, 10.1107/s0021889810030499 32. Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 115426, 10.1103/physrevb.71.115426 33. Váczi, T. A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles. Appl. Spectrosc. 2014, 68, 1274-1278, 10.1366/13-07275 34. Narkevich, N.; Syrtanov, M.; Mironov, Yu.; Surikova, N. Stacking faults and microstrains in strain-hardened surface of nitrogen-alloyed austenitic steel. AIP Conference Proceedings, 2016; Vol. 1783, p 020161. 35. Vasil'ev, D. M.; Smirnov, B. I. Certain X-RAY diffraction methods of investigating cold worked metals. Phys.-Usp. 1961, 73, 503-558, 10.3367/ufnr.0073.196103e.0503 36. Salonitis, K. On surface grind hardening induced residual stresses. Procedia CIRP 2014, 13, 264-269, 10.1016/j.procir.2014.04.045 37. Fergani, O.; Shao, Y.; Lazoglu, I.; Liang, S. Y. Temperature effects on grinding residual stress. Procedia CIRP 2014, 14, 2-6, 10.1016/j.procir.2014.03.100 38. Copeland, M. I.; Goodrich, D. The hafnium-iridium system. J. Less-Common Met. 1969, 19, 347-355, 10.1016/0022-5088(69)90004-6 39. Eremenko, V. N.; Kriklya, L. S.; Khoruzhaya, V. G.; Shtepa, T. D. Interaction of hafnium with ruthenium and iridium. Sov. Powder Metall. Met. Ceram. 1991, 30, 765-770, 10.1007/bf00794217 40. Cohn, G. Reactions in the Solid State. Chem. Rev. 1948, 42, 527-579, 10.1021/cr60133a002 41. Jain, S. K.; Jain, S. K. Conceptual Chemistry; S. Chand School: New Delhi, 2015; Vol. 1. 42. Raub, E.; Falkenburg, G. Die Reaktionen zwischen Karbiden und Platin bzw. Palladium bei hohen Temperaturen im Hinblick auf das Sintern von Hartmetall. Z. Metallkd. 1964, 55, 190-192 43. Baker, R. T. K.; Sherwood, R. D. Catalytic oxidation of graphite by iridium and rhodium. J. Catal. 1980, 61, 378-389, 10.1016/0021-9517(80)90385-1 44. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401, 10.1103/physrevlett.97.187401 45. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246, 10.1038/nnano.2013.46 46. Sha, J. B.; Yamabe-Mitarai, Y. Phase and microstructural evolution of Ir-Si binary alloys with fcc/silicide structure. Intermetallics 2006, 14, 672-684, 10.1016/j.intermet.2005.11.005 47. Zeng, Y.; Wang, D.; Xiong, X.; Zhang, X.; Withers, P. J.; Sun, W.; Smith, M.; Bai, M.; Xiao, P. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 °C. Nat. Commun. 2017, 8, 15836, 10.1038/ncomms15836 48. Gild, J.; Zhang, Y.; Harrington, T.; Jiang, S.; Hu, T.; Quinn, M. C.; Mellor, W. M.; Zhou, N.; Vecchio, K.; Luo, J. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946, 10.1038/srep37946