Цитирование: | 1. Opeka, M. M.; Talmy, I. G.; Zaykoski, J. A. Oxidation-based materials selection for 2000°C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 2004, 39, 5887-5904, 10.1023/b:jmsc.0000041686.21788.77
2. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications; Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E., Zhou, Y., Eds.; Wiley: Hoboken, NJ, 2014.
3. Kazenas, E. K.; Tsvetkov, J. V. The Evaporation of Oxides; Nauka: Moscow, 1997
4. Lozanov, V. V.; Baklanova, N. I.; Shayapov, V. R.; Berezin, A. S. Crystal growth and photoluminescence properties of reactive CVD-derived monoclinic hafnium dioxide. Cryst. Growth Des. 2016, 16, 5283-5293, 10.1021/acs.cgd.6b00824
5. Shimada, S.; Yunazar, F.; Otani, S. Oxidation of hafnium carbide and titanium carbide single crystals with the formation of carbon at high temperatures and low oxygen pressures. J. Am. Ceram. Soc. 2004, 83, 721-728, 10.1111/j.1151-2916.2000.tb01265.x
6. Bargeron, C. B.; Benson, R. C.; Jette, A. N.; Phillips, T. E. Oxidation of hafnium carbide in the temperature range 1400 to 2060 °C. J. Am. Ceram. Soc. 1993, 76, 1040-1046, 10.1111/j.1151-2916.1993.tb05332.x
7. Courtright, E. L.; Prater, J. T.; Holcomb, G. R.; Pierre, G. R. St.; Rapp, R. A. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium. Oxid. Met. 1991, 36, 423-437, 10.1007/bf01151590
8. Sha, J. B.; Yamabe-Mitarai, Y. Ir-Hf-Zr ternary refractory superalloys for ultra-high temperatures-Phase and microstructural constitution. Intermetallics 2013, 41, 1-9, 10.1016/j.intermet.2013.04.012
9. Sha, J. B.; Yamabe-Mitarai, Y. Ultra-high strength of Ir-Hf-Nb ternary alloys with an fcc/L12 mictostructure at 1950°C. Intermetallics 2013, 32, 145-150, 10.1016/j.intermet.2012.07.034
10. Yamabe-Mitarai, Y.; Gu, Y.; Huang, C.; Völkl, R.; Harada, H. Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM 2004, 56, 34-39, 10.1007/s11837-004-0198-z
11. Yamabe-Mitarai, Y.; Ro, R.; Harada, H.; Maruko, T. Ir-base refractory superalloys for ultra-high temperatures. Metall. Mater. Trans. A 1998, 29, 537-549, 10.1007/s11661-998-0135-9
12. Yamabe-Mitarai, Y.; Murakami, H. Mechanical properties at 2223 K and oxidation behavior of Ir alloys. Intermetallics 2014, 48, 86-92, 10.1016/j.intermet.2013.09.014
13. Cornish, L. A.; Fischer, B.; Völkl, R. Development of platinum-group-metal superalloys for high-temperature use. MRS Bull. 2003, 28, 632-638, 10.1557/mrs2003.190
14. Halevy, I.; Salhov, S.; Winterrose, M. L.; Broide, A.; Yue, A. F.; Robin, A.; Yeheskel, O.; Hu, J.; Yaar, I. High pressure study and electronic structure of the super-alloy HfIr3. J. Phys.: Conf. Ser. 2010, 215, 012012, 10.1088/1742-6596/215/1/012012
15. Ohriner, E. K. Rhenium and Iridium; Report CONF-970201-6; Oak Ridge National Laboratory: Oak Ridge, Tennessee, USA, 1996; p 17. https://www.osti.gov/scitech/servlets/purl/443185.
16. Harding, J. T.; Fry, V.; Tuffias, R. H.; Kaplan, R. B. Oxidation Resistance of CVD Coatings; Final report AFRPL TR-86-099; Air Force Space Technology Center Space Division: California, USA, 1987; p 29. http://www.dtic.mil/dtic/tr/fulltext/u2/a178337.pdf.
17. Pierre, G. St. Explanatory Research on the Protection of Carbon-Carbon Composites Against Oxidation at Very High Temperatures (∗3000 °F) with Engel-Brewer and Other Intermetallic Compounds; Final report AD-A207 907; The Ohio State University: Ohio, USA, 1988; p 204. http://www.dtic.mil/dtic/tr/fulltext/u2/a207907.pdf.
18. Kwon, J.-W. Formation and growth of Ir3Hf layers at Ir/HfC interfaces between 1900°C and 2200°C. Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1989, 153 p.
19. Hsia, C. Mechanisms and rate of solid state diffusion in iridium-hafnium intermetallic compound (Ir3Hf) and calcium sulfate. Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1993, 206 p.
20. Ramesh, G. V.; Kodiyath, R.; Tanabe, T.; Manikandan, M.; Fujita, T.; Umezawa, N.; Ueda, S.; Ishihara, S.; Ariga, K.; Abe, H. Stimulation of electro-oxidation catalysis by bulk-structural transformation in intermetallic ZrPt3 nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 16124-16130, 10.1021/am504147q
21. Yang, X. F.; Xu, W.; Li, M.; Koel, B. E.; Chen, J. G. A new class of electrocatalysts of supporting Pt on an Engel-Brewer alloy substrate: a demonstration for oxidation of ethylene glycol. Chem. Commun. 2014, 50, 12981-12984, 10.1039/c4cc04006f
22. Wang, H.; Carter, E. A. Metal-metal bonding in Engel-Brewer intermetallics: "Anomalous" charge transfer in zirconium-platinum (ZrPt3). J. Am. Chem. Soc. 1993, 115, 2357-2362, 10.1021/ja00059a034
23. Gibson, J. K.; Brewer, L.; Gingerich, K. A. Thermodynamics of several Lewis-acid-base stabilized transition metal alloys. Metall. Mater. Trans. A 1984, 15, 2075-2085, 10.1007/bf02646841
24. Strife, J. R.; Smeggil, J. G.; Worrell, W. L. Reaction of iradium with metal carbides in the temperature range of 1923 to 2400 K. J. Am. Ceram. Soc. 1990, 73, 838-845, 10.1111/j.1151-2916.1990.tb05123.x
25. Mercuri, R. A.; Criscione, J. M. The reaction of iridium and rhodium with refractory carbides and borides. Abstr. Papers, 158th Mtg, Am. Chem. Soc., 1969. Platinum Metals Review, 1970; Vol. 14 (1), p 31.
26. Holleck, H.. Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen; Habilitationsschrift KfK-3087B; Institut für Material und Festkörperforschung: Kernforschungszentrum Karlsruhe, Deutschland, 1981; p 358. https://publikationen.bibliothek.kit.edu/200015609.
27. Lozanov, V. V.; Baklanova, N. I.; Morozova, N. B. Gas-phase deposition of complex high-melting coatings on carbon fiber material. J. Struct. Chem. 2015, 56, 900-906, 10.1134/s002247661505011x
28. Lozanov, V. V., Baklanova, N. I.. Physico-chemical study of formation of iridium-based intermetallics. Abstr. Papers, 21st Int. Chernyaev Conf., 2016; p 78 (in Russian). http://chernyaev2016.ru/upload/iblock/files/tezisi%20CHK.pdf.
29. Gasch, M.; Johnson, S. Physical characterization and arcjet oxidation of hafnium-based ultra high temperature ceramics fabricated by hot pressing and field-assisted sintering. J. Eur. Ceram. Soc. 2010, 30, 2337-2344, 10.1016/j.jeurceramsoc.2010.04.019
30. Cheary, R. W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109-121, 10.1107/s0021889891010804
31. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126-1128, 10.1107/s0021889810030499
32. Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 115426, 10.1103/physrevb.71.115426
33. Váczi, T. A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles. Appl. Spectrosc. 2014, 68, 1274-1278, 10.1366/13-07275
34. Narkevich, N.; Syrtanov, M.; Mironov, Yu.; Surikova, N. Stacking faults and microstrains in strain-hardened surface of nitrogen-alloyed austenitic steel. AIP Conference Proceedings, 2016; Vol. 1783, p 020161.
35. Vasil'ev, D. M.; Smirnov, B. I. Certain X-RAY diffraction methods of investigating cold worked metals. Phys.-Usp. 1961, 73, 503-558, 10.3367/ufnr.0073.196103e.0503
36. Salonitis, K. On surface grind hardening induced residual stresses. Procedia CIRP 2014, 13, 264-269, 10.1016/j.procir.2014.04.045
37. Fergani, O.; Shao, Y.; Lazoglu, I.; Liang, S. Y. Temperature effects on grinding residual stress. Procedia CIRP 2014, 14, 2-6, 10.1016/j.procir.2014.03.100
38. Copeland, M. I.; Goodrich, D. The hafnium-iridium system. J. Less-Common Met. 1969, 19, 347-355, 10.1016/0022-5088(69)90004-6
39. Eremenko, V. N.; Kriklya, L. S.; Khoruzhaya, V. G.; Shtepa, T. D. Interaction of hafnium with ruthenium and iridium. Sov. Powder Metall. Met. Ceram. 1991, 30, 765-770, 10.1007/bf00794217
40. Cohn, G. Reactions in the Solid State. Chem. Rev. 1948, 42, 527-579, 10.1021/cr60133a002
41. Jain, S. K.; Jain, S. K. Conceptual Chemistry; S. Chand School: New Delhi, 2015; Vol. 1.
42. Raub, E.; Falkenburg, G. Die Reaktionen zwischen Karbiden und Platin bzw. Palladium bei hohen Temperaturen im Hinblick auf das Sintern von Hartmetall. Z. Metallkd. 1964, 55, 190-192
43. Baker, R. T. K.; Sherwood, R. D. Catalytic oxidation of graphite by iridium and rhodium. J. Catal. 1980, 61, 378-389, 10.1016/0021-9517(80)90385-1
44. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401, 10.1103/physrevlett.97.187401
45. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246, 10.1038/nnano.2013.46
46. Sha, J. B.; Yamabe-Mitarai, Y. Phase and microstructural evolution of Ir-Si binary alloys with fcc/silicide structure. Intermetallics 2006, 14, 672-684, 10.1016/j.intermet.2005.11.005
47. Zeng, Y.; Wang, D.; Xiong, X.; Zhang, X.; Withers, P. J.; Sun, W.; Smith, M.; Bai, M.; Xiao, P. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 °C. Nat. Commun. 2017, 8, 15836, 10.1038/ncomms15836
48. Gild, J.; Zhang, Y.; Harrington, T.; Jiang, S.; Hu, T.; Quinn, M. C.; Mellor, W. M.; Zhou, N.; Vecchio, K.; Luo, J. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946, 10.1038/srep37946
|