Инд. авторы: Ragozin A.L., Zedgenizov D.A., Shatsky V.S., Kuper K.E.
Заглавие: Formation of mosaic diamonds from the Zarnitsa kimberlite
Библ. ссылка: Ragozin A.L., Zedgenizov D.A., Shatsky V.S., Kuper K.E. Formation of mosaic diamonds from the Zarnitsa kimberlite // Russian Geology and Geophysics. - 2018. - Vol.59. - Iss. 5. - P.486-498. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2018.04.003; РИНЦ: 35483672; SCOPUS: 2-s2.0-85046677868; WoS: 000429910700003; WoS: 000432475000003;
Реферат: eng: Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim. © 2018
Ключевые слова: Sakha; Russian Federation; Daldyn Field; peridotite; nitrogen; kimberlite; isotopic composition; formation mechanism; diamond; carbon isotope; Zarnitsa kimberlite; peridotitic minerals; inclusions; diamond; inclusion; Siberian Craton;
Издано: 2018
Физ. характеристика: с.486-498
Цитирование: 1. Afanas'ev, V.P., Zinchuk, N.N., Main lithodynamic types of dispersion trains of kimberlite indicator minerals and their formation conditions. Geologiya Rudnykh Mestorozhdenii 41:3 (1999), 281–288. 2. Afanas'ev, V.P., Zinchuk, N.N., Koptil, V.I., Diamond polygenesis: evidence for the native sources of placers of the northeastern Siberian Platform. Dokl. Akad. Nauk. 361:3 (1998), 366–369. 3. Afanas'ev, V.P., Zinchuk, N.N., Tychkov, S.A., Diamond potential of Precambrian formations in the Siberian craton. Vestnik Voronezhskogo Gos. Univ. Ser. Geol. No. 1 (2002), 19–35. 4. Afanas'ev, V.P., Agashev, A.M., Orihashi, Yu., Pokhilenko, N.P., Sobolev, N.V., Paleozoic U-Pb age of rutile inclusions in diamonds of the V-VII variety from palcers of the Northeast Siberian Platform. Dokl. Earth Sci. 428:1 (2009), 1151–1155. 5. Afanas'ev, V.P., Lobanov, S.S., Pokhilenko, N.P., Koptil’ V.I., Mityuk-hin, S.I., Gerasimchuk, A.V., Pomazanskii, B.S., Gorev, N.I., Polygenesis of diamonds in the Siberian Platform. Russian Geology and Geophysics (Geologiya i Geofizika) 52:3 (2011), 259–274 (335-353). 6. Ashchepkov, I.V., Vladykin, N.V., Amshinsky, A.N., Pokhilenko, N.P., Rotman, A.Y., Nikolaeva, I.A., Palessky, V.S., Saprykin, A.I., Anoshin, G.N., Khmelnikova, O.S., Minerals from the Zarnitsa pipe kimberlite: the key to enigma of the mantle composition and construction, in: Plume and Problems of Deep Sources of Alkaline Magmatism. 2003, Proc. Int. Workshop. Irkutsk State University, Irkutsk, 20–38. 7. Baker, J.M., A new proposal for the structure of platelets in diamond. Diamond Relat. Mater. 7 (1998), 1282–1290. 8. Bakumenko, I.T., Sobolev, N.V., Khokhryakov, A.F., Chepurov, A.I., Euhedral inclusions in diamond crystals. Dokl. AN SSSR 278:6 (1984), 1461–1465. 9. Bartoshinskii, Z.V., Kvasnitsa, V.N., Crystal Morphology of Kimberlitic Diamonds [in Russian]. 1991, Naukova Dumka, Kiev. 10. Bobrievich, A.P., Smirnov, G.I., Sobolev, V.S., A diamond-bearing eclogitic xenolith. Dokl. AN SSSR 126 (1959), 637–640. 11. Boyd, F.R., Finnerty, A.A., Conditions of origin of natural diamonds of peridotite affinity. J. Geophys. Res. B 85 (1980), 6911–6918. 12. Boyd, S.R., Kiflawi, I., Woods, G.S., The relationship between infrared absorption and the A defect concentration in diamond. Philosophical Mag. B 69 (1994), 1149–1153. 13. Boyd, S.R., Kiflawi, I., Woods, G.S., Infrared absorption by the B nitrogen aggregate in diamond. Philosophical Mag. B 72 (1995), 351–361. 14. Bulanova, G.P., Barashkov, Yu.P., Talnikova, S.B., Smelova, G.P., Natural Diamonds: Genetic Aspects [in Russian]. 1993, Nauka, Novosibirsk. 15. Bulanova, G.P., Griffin, W.L., Kaminsky, F.V., Davies, R.M., Spetsius, Z.V., Ryan, C.G., Andrew, A., Zakharchenco, O.D., Diamonds from Zarnitsa and Dalnaya kimberlites (Yakutia), their nature and lithospheric mantle source. Proc. 7th Int. Kimberlite Conf. Red Roof Designs, Cape Town, 1999, 49–56. 16. Burgess, S.D., Blackburn, T.J., Bowring, S.A., High-precision U-Pb geochronology of Phanerozoic large igneous provinces. Schmidt, A., Fristad, K.E., Elkins-Tanton, L., (eds.) Volcanism and Global Environmental Change, 2015, Cambridge University Press, Cambridge, 47–62. 17. Bursill, L.A., Glaisher, R.W., Aggregation and dissolution of small and extended defect structures in type Ia diamond. Am. Mineral. 70 (1985), 608–618. 18. Cartigny, P., Stable isotopes and the origin of diamond. Elements 1 (2005), 79–84. 19. Cartigny, P., Harris, J.W., Javoy, M., Diamond genesis, mantle fractionations and mantle nitrogen content: a study of 513C-N concentrations in diamonds. Earth Planet. Sci. Lett. 185 (2001), 85–98. 20. Davies, G., The A nitrogen aggregate in diamond: its symmetry and possible structure. J. Physics C: Solid State Physics, 9, 1976, L537. 21. Davis, G.L., Sobolev, N.V., Kharkiv, A.D., New data on the U-Pb zircon age of kimberlites in Yakutia. Dokl. AN SSSR 254:1 (1980), 175–179. 22. Deines, P., Harris, J.W., Gurney, J.J., The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa. Geochim. Cosmochim. Acta 55 (1991), 2615–2625. 23. Ernst, R.E., Okrugin, A.V., Veselovskiy, R.V., Kamo, S.L., Hamilton, M.A., Pavlov, V.E., Soderlund, U., Chemberlain, C.R., Rojers, K., The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russian Geology and Geophysics (Geologiya i Geofizika) 57:5 (2016), 653–671 (833-855). 24. Fritsch, E., Hainschwang, T., Massi, L., Rondeau, B., Hydrogen-related optical centers in natural diamond: An update. New Diamond and Frontier Carbon Technology 17 (2007), 63–89. 25. Galimov, E.M., Variations in the isotope systematics of diamond: implications for diamond formation conditions. Geokhimiya No. 8 (1984), 1091–1118. 26. Galimov, E.M., Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim. Cosmochim. Acta 55 (1991), 1697–1708. 27. Grakhanov, S.A., Shatalov, V.I., Shtyrov, V.A., Kychkin, V.R., Suleima-nov, A.M., Placer Diamonds in Russia [in Russian]. 2007, Akademi-cheskoe Izd. GEO, Novosibirsk. 28. Grutter, H.S., Gurney, J.J., Menzies, A.H., Winter, F., An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77 (2004), 841–857. 29. Gurney, J.J., Harris, J.W., Rickard, R.S., Silicate and oxide inclusions in diamonds from the Orapa Mine, Botswana. Kornprobst, J., (eds.) Kimberlites II: The Mantle and Crust-Mantle Relationships, 1984, Elsevier, Amsterdam, 3–9. 30. Harris, J.W., Recognition of diamond inclusions. 1. Syngenetic mineral inclusions. Industrial Diamond Review 28 (1968), 402–410. 31. Harris, J.W., Diamond geology. Field, J.E., (eds.) The Properties of Natural and Synthetic Diamond, 1992, Academic Press, London, 345–393. 32. Harris, J.W., Gurney, J.J., Inclusions in diamond. Field, J.E., (eds.) The Properties of Diamond, 1979, Academic Press, New York, 555–591. 33. Humble, P., The structure and mechanism of formation of platelets in natural type Ia diamond. Proc. R. Soc. London, Ser. A: Mathematical, Physical and Engineering Sciences, 381, 1982, 65–81. 34. Jones, R., Goss, J.P., Theory of aggregation of nitrogen in diamond. EMIS Datareviews Series 26 (2002), 127–129. 35. Kharkiv, A.D., Zinchuk, N.N., Kryuchkov, A.I., Primary Diamond Deposits of the World [in Russian]. 1998, Nedra, Moscow. 36. Khokhryakov, A.F., Pal'yanov, Y.N., The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Mineral. 92 (2007), 909–917. 37. Khokhryakov, A.F., Pal'yanov, Y.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 95 (2010), 1508–1514. 38. Khokhryakov, A.F., Pal'yanov, Yu.N., Sobolev, N.V., Evolution of crystal morphology of natural diamond in dissolution processes: experimental data. Dokl. Earth Sci. 381:8 (2001), 884–888. 39. Khokhryakov, A.F., Pal'yanov, Yu.N., Sobolev, N.V., Crystal morphology as an indicator of redox conditions of diamond dissolution at the mantle P-T parameters. Dokl. Earth Sci. 385:5 (2002), 534–537. 40. Kirkley, M.B., Gurney, J.J., Otter, M.L., Hill, S.J., Daniels, L.R., The application of C isotope measurements to the identification of the sources of C in diamonds—review. Appl. Geochem., 6, 1991 477 494. 41. Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Y., Hauri, E.H., Kaminsky, F.V., Sobolev, N.V., Navon, O., High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112 (2009), 648–659. 42. Koptil, V.I., Typomorphic Features of Diamonds in the Northeastern Siberian Craton: Implications for Diamond Prediction and Exploration [in Russian]. Author's Astract, Candidate Thesis, 1994, Novosibirsk, OIGGM. 43. Koreshkova, M.Yu., Downes, H., Levsky, L.K., Vladykin, N.V., Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia. J. Petrol. 52 (2011), 1857–1885. 44. Kostrovitskii, S.I., Spetsius, Z.V., Yakovlev, D.A., Von-der-Vlaas, G.S., Suvorova, L.F., Bogush, I.N., Primary Diamond Deposits in the Yakutian Kimberlite Province. An Atlas [in Russian], 2015, Alrosa, Mirnyi. 45. Lang, A.R., A proposed structure for nitrogen impurity platelets in diamond. Proc. Phys. Soc. London 84 (1964), 871–876. 46. Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V., Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur. J. Mineral. 20 (2008), 317–331. 47. Logvinova, A.M., Wirth, R., Tomilenko, A.A., Afanas'ev, V.P., Sobolev, N.V., The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russian Geology and Geophysics (Geologiya i Geofizika) 52:11 (2011), 1286–1297 (1634-1648). 48. Malkov, B.A., Askhabov, A.M., Octahedral mineral inclusions (negative crystals): witness of xenogenic diamond origin in kimberlite. Dokl. AN SSSR 238:3 (1978), 695–699. 49. Meyer, H.O.A., Genesis of diamond—a mantle saga. Am. Mineral. 70 (1985), 344–355. 50. Meyer, H.O.A., Inclusions in diamonds. Nixon, P.H., (eds.) Mantle Xenoliths, 1987, Wiley, Chichester, 501–522. 51. Milashev, V.A., Rozenberg, V.I., The crustal structure and distribution of kimberlites on the Siberian Platform. Geologiya i Geofizika (Soviet Geology and Geophysics) 15:1 (1974), 61–73 (49-59). 52. Moor, G.G., Sobolev, V.S., Siberian kimberlites. Mineralogiya (Transactions, Lvov Geological Society) No. 11 (1957), 369–371. 53. Navon, O., Diamond formation in the Earth's mantle. Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., (eds.) Proc. VIIth Int. Kimberlite Conf. Red Roof Design, Cape Town, 1999, 584–604. 54. O'Reilly, S.Y., Chen, D., Griffin, W., Ryan, C., Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral. Mag. 61 (1997), 257–269. 55. Orlov, Yu.L., Diamond Morphology [in Russian]. 1963, Izd. AN SSSR, Moscow. 56. Orlov, Yu.L., Diamond Mineralogy [in Russian]. 1984, Nauka, Moscow. 57. Orlov, Yu.L., Bulienkov, N.A., Martovitskiy, V.P., Spherical diamond crystals: A new type of natural fibrous single crystals. Dokl. AN SSSR 252:3 (1980), 703–707. 58. Pal'yanov, Yu.N., Khokhryakov, A.F., Borzdov, Yu.M., Doroshev, A.M., Tomilenko, A.A., Sobolev, N.V., Inclusions in synthetic diamonds. Dokl. Akad. Nauk 338:1 (1994), 78–80. 59. Podvysotskii, V.T., Zinchuk, N.N., Afanas'ev, V.P., Morphological Features of Indicator Minerals from Sedimentary Formations and Diamond Placers of Different Genetic Types in the Siberian Craton [in Russian]. 2000, ALROSA, Mirnyi. 60. Ponomarenko, A.I., Spetsius, Z.V., Sobolev, N.V., Garnet pyroxenites: A new type of diamond-bearing rocks. Dokl. AN SSSR 251:2 (1981), 438–441. 61. Ragozin, A.L., Shatsky, V.S., Rylov, G.M., Goryainov, S.V., Coesite inclusions in rounded diamonds from placers of the northeastern Siberian Platform. Dokl. Earth Sci. 384:4 (2002), 385–389. 62. Ragozin, A.L., Shatskii, V.S., Zedgenizov, D.A., New data on the growth environment of diamonds of the variety V from placers of the northeastern Siberian platform. Dokl. Earth Sci. 425:2 (2009), 436–440. 63. Ragozin, A.L., Zedgenizov, D.A., Kuper, K.E., Shatsky, V.S., Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Mineral. Petrol. 110 (2016), 861–875. 64. Ragozin, A., Zedgenizov, D., Kuper, K., Palyanov, Y., Specific internal structure of diamonds from Zarnitsa kimberlite pipe. Crystals, 7, 2017, 133. 65. Ragozin, A.L., Zedgenizov, D.A., Shatsky, V.S., Raman identification of mineral inclusions in specific rounded diamonds from the placers of northeastern Siberiam Platform. XII Int. Conf. GeoRaman-2016. Institute of Geology and Mineralogy, Novosibirsk, 2016. 66. Reutsky, V.N., Borzdov, Y.M., Palyanov, Y.N., Effect of diamond growth rate on carbon isotope fractionation in Fe-Ni-C system. Diam. Relat. Mat. 21 (2012), 7–10. 67. Reutsky, V., Borzdov, Y., Palyanov, Y., Sokol, A., Izokh, O., Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions. Contrib. Mineral. Petrol., 170, 2015, 41. 68. Rozen, O.M., Levskii, L.K., Zhuravlev, D.Z., Rotman, A.Ya., Spetcius, Z.V., Makeev, A.F., Zinchuk, N.N., Manakov, A.V., Serenko, V.P., Paleoproterozoic accretion in the northeastern Siberian craton: isotope dating of the Anabar collisional system. Stratigrafiya. Geologicheskaya Korrelatsiya 14:6 (2006), 3–24. 69. Sarsadskikh, N.N., Popugaeva, L.A., New data on ultramafic magma- tism in the Siberian craton. Razvedka i Okhrana Nedr 5 (1955), 11–20. 70. Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V., Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins. Eur. J. Mineral. 26 (2014), 41–52. 71. Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V., Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 28 (2015), 106–120. 72. Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., Walter, M.J., Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem 75 (2013), 355–421. 73. Shubnikov, A.V., Formation of crystalline aggregates by the geometrical selection law. Dokl. AN SSSR 51:9 (1946), 679–681. 74. Skuzovatov, S.Yu., Zedgenizov, D.A., Shatsky, V.S., Ragozin, A.L., Ku-per, K.E., Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia). Russian Geology and Geophysics (Geologiya i Geofizika) 52:1 (2011), 85–96 (107-121). 75. Smirnov, G.I., Mineralogy of Siberian kimberlites. Int. Geol. Rev. 1 (1959), 21–39. 76. Smith, E.M., Kopylova, M.G., Frezzotti, M.L., Afanas'ev, V.P., N-rich fluid inclusions in octahedrally-grown diamond. Earth Planet. Sci. Lett. 393 (2014), 39–48. 77. Smith, E.M., Kopylova, M.G., Frezzotti, M.L., Afanas'ev, V.P., Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos 216-217 (2015), 106–117. 78. Sobolev, V.S., (eds.) Diamond Deposits of Yakutia [in Russian], 1959, Gosgeoltekhizdat, Moscow. 79. Sobolev, N.V., Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. Am. Geophys., 1977, Union, Washington, D.C. 80. Sobolev, N.V., Diamond parageneses and the problem of deep-seated mineral formation. Zapiski VMO 112:4 (1983), 389–397. 81. Sobolev, N.V., Lavrentiev, Yu.G., Pospelova, L.N., Sobolev, E.V., Cr pyropes from Yakutian diamonds. Dokl. AN SSSR 189:1 (1969), 162–165. 82. Sobolev, V.S., Nai, B.S., Sobolev, N.V., Lavrentiev, Yu.G., Pospelova, L.N., Xenoliths of diamond-bearing pyrope serpentinites from the Aikhal kimberlite. Dokl. AN SSSR 188:5 (1969), 1141–1143. 83. Sobolev, N.V., Botkunov, A.I., Bakumenko, I.T., Sobolev, V.S., Octahedral crystalline inclusions in diamond. Dokl. AN SSSR 204:1 (1972), 192–195. 84. Sobolev, N.V., Lavrent'ev, Y.G., Pokhilenko, N.P., Usova, L.V., Chrome-rich garnets from the kimberlites of Yakutia and their paragene-ses. Contrib. Mineral. Petrol 40 (1973), 39–52. 85. Sobolev, N.V., Galimov, E.M., Ivanovskaya, I.N., Efimova, E.S., Carbon isotope composition of diamonds with mineral inclusions. Dokl. AN SSSR 249:5 (1979), 1217–1220. 86. Sobolev, N.V., Sobolev, V.N., Snyder, G.A., Yefimova, E.S., Taylor, L.A., Significance of eclogitic and related parageneses of natural diamonds. Int. Geol. Rev. 41 (1999), 129–140. 87. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Malygina, E.V., Kuzmin, D.V., Sobolev, A.V., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112 (2009), 701–713. 88. Solodova, Yu.P., Podolskikh, L.D., Leetvin, L.G., Kulakova, V.M., Butuzov, V.P., Samoilovich, M.I., Structure of natural diamonds of variety V. Kristallografiya 20 (1975), 90–95. 89. Spetsius, Z.V., Occurrence of diamond in the mantle: a case study from the Siberian Platform. J. Geochem. Exploration 53 (1995), 25–39. 90. Taylor, L.A., Anand, M., Promprated, P., Floss, C., Sobolev, N.V., The significance of mineral inclusions in large diamonds from Yakutia. Russia. Am. Mineral. 88 (2003), 912–920. 91. Tomilenko, A.A., Ragozin, A.L., Shatsky, V.S., Shebanin, A.P., Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl. Earth Sci. 379:5 (2001), 571–574. 92. Woods, G.S., Platelets and the infrared absorption of type Ia diamonds. Proc. R. Soc. London, Ser. A: Mathematical. Physical and Engineering Sciences 407 (1986), 219–238. 93. Woods, G.S., Collins, A.T., Infrared absorption spectra of hydrogen complexes in type I diamonds. J. Phys. Chem. Solids 44 (1983), 471–475. 94. Woods, G.S., Purser, G.C., Mtimkulu, A.S.S., Collins, A.T., The nitrogen content of type Ia natural diamonds. J. Phys. Chem. Solids 51 (1990), 1191–1197. 95. Zaitsev, A.M., Optical Properties of Diamond. 2001, Data Handbook, Springer Verlag, Berlin. 96. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., Kagi, H., Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112 (2009), 638–647. 97. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, V.L., Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russian Geology and Geophysics (Geologiya i Geofizika) 52:11 (2011), 1298–1309 (1649-1664). 98. Zinchuk, N.N., Koptil, V.I., Boris, E.I., Principles of diamond classification and zoning (case of the Siberian craton). Vestnik Voronezh- skogo Gos. Univ. Ser. Geol., 1998, 208–225. 99. Zinchuk, N.N., Koptil, V.I., Boris, E.I., Typomorphic features of placer diamonds from the Siberian craton as guides to primary deposits. Rudy i Metally 3 (1999), 18–30.