Инд. авторы: Mazurov M.P., Grishina S.N., Titov A.T., Shikhova A.V.
Заглавие: Evolution of Ore-Forming Metasomatic Processes at Large Skarn Iron Deposits Related to the Traps of the Siberian Platform
Библ. ссылка: Mazurov M.P., Grishina S.N., Titov A.T., Shikhova A.V. Evolution of Ore-Forming Metasomatic Processes at Large Skarn Iron Deposits Related to the Traps of the Siberian Platform // Petrology. - 2018. - Vol.26. - Iss. 3. - P.265-279. - ISSN 0869-5911. - EISSN 1556-2085.
Внешние системы: DOI: 10.1134/S0869591118030049; РИНЦ: 35483347; SCOPUS: 2-s2.0-85047473543; WoS: 000433042100004;
Реферат: eng: The paper presents systematized and synthesized data on the parameters and evolutionary sequence of metasomatic processes that accompanied interaction between Permian–Triassic trap complex and rocks of the sedimentary cover of the Siberian Platform at the large skarn iron deposits. Relations of the textural–compositional, morphological, and genetic diversity of the skarns and ores with the phases and stages of the origin of ore-bearing volcano-tectonic edifices are demonstrated with reference to the Korshunovskoe and Rudnogorskoe deposits. The genetic reconstructions are based on survey materials and data on the mineralogy of the rocks and ores (obtained by optical and scanning electron microscopy, microprobe analysis, EPR, Raman and IR spectroscopy, and by studying inclusions in minerals). A principally important feature of the volcano-tectonic edifices of the large mineral deposits is their multistage evolution and combinations of fluid-conducting zones, which are related to (1) volcanic apparatuses, (2) shallow-depth magmatic chambers (laccoliths) hosted in carbonate–salt rocks, and (3) multistage fracture structures produced by the collapse of the leached space. The major ore-bearing structures were formed simultaneously with the development of an intermediate magmatic chamber hosted in Cambrian carbonate–salt rocks beneath a seal of terrigenous sedimentary rocks. Magmatic-stage magnesian skarns with disseminated ores in them and in the calciphyres were produced during the prograde stage in the apical parts of the laccoliths, at contacts between the dolerites and dolomites. During the early prograde stage, skarn–ore bodies developed around injection bodies of globulated dolerites, laccoliths, and sills; stockworks and steep bodies of fragmentary magnesian and calcic skarns and ores were formed within the diatremes; and conformable bodies and veins were produced in the splay fracture zones. The later reactivation of faults and fractures and the involvement of connate brines and solutions from the evaporite complex triggered the redeposition of the ore masses, crystallization of the mineral assemblages of hydrated skarns, development of large domains of serpentine–chlorite–epidote–amphibole rocks, calcic skarns, and ores. Data on multiphase fluid inclusions in the forsterite, apatite, and halite indicate that the mineral-forming fluid initially was a highly concentrated solution–melt (total salinity of 60%) with high-density reduced gases. The magnesian skarns were formed during the following stages: (1) forsterite + fassaite + spinel + first-population magnetite (820–740°C); (2) phlogopite + titanite + pargasite + second-population magnetite (600–500°C), and (3) clinochlore + serpentine + tremolite + pyrrhotite + chalcopyrite (≥450°C). © 2018, Pleiades Publishing, Ltd.
Ключевые слова: dolomite; iron ores; metasomatism; Siberian Platform; skarn; rock salt; dolerite;
Издано: 2018
Физ. характеристика: с.265-279
Цитирование: 1. Al’mukhamedov, A.I., Medvedev, A.Ya., and Zolotukhin, V.V., Chemical evolution of the Permian–Triassic basalts of the Siberian Platform in space and time, Petrologiya, 2004, vol. 12, no. 4, pp. 339–353. 2. Aleksandrov S.M. and Troneva, M.A., Genesis and composition of borates of the ludwigite–vonsenite series in magnesian skarns of the Urals, Siberia, and the Russian Far East, Geochem. Int., 2004, vol. 42, no. 5, pp. 449–464. 3. Angaro–Ilimskie zhelezorudnye mestorozhdeniya trappovoi formatsii yuzhnoi chasti Sibirskoi platformy (Angara–Ilim Iron Ore Deposits of the Trap Association in the Southern Siberian Platform), Antipov, G.I., et al, Eds., Moscow: Gosgeoltekhizdat, 1960. 4. Baryshev, A.S., Vakhromeev, G.S., Zhitkov, A.N., and Kovalevich, V.B., Geofizicheskie metody poiskov zhelezorudnykh mestorozhdenii na yuge Sibirskoi platformy (Geophysical Exploration for Iron Ore Deposits in the Southern Siberian Platform), Moscow: Nedra, 1980. 5. Bondarenko, P.M., Method of physical modeling of ring and other central-symmetrical structures of different morphology and genesis, Eksperiment i modelirovanie v geologicheskikh issledovaniyakh (Experiment and Modeling in Geological Studies), Novosibirsk: IGiG SO AN SSSR, 1984, pp. 54–88. 6. Dunaev, V.A., Vertical zoning of the Korshunovskoe iron ore deposit, Geol. Rudn. Mestorozhd., 1992, no. 3, pp. 92–98. 7. Dymkin, A.M. and Permyakov, A.A., Ontogeniya magnetita (Ontogeny of Magnetite), Sverdlovsk: UNTs AN SSSR, 1984. 8. Einaudi, M.T., Meinert, L.D., and Newberry, R.J., Skarn deposits, Econ. Geol., 1981, vol. 75, p. 317–391. 9. Grishina, S.N., Mazurov, M.P., Polozov, A.G., and Ariskina, O.S., Fluids associated to iron deposits in the south of Siberian platform, Terra Nostra 99/6. Abstracts of ECROFI XV, 1999, pp. 132–134. 10. Grishina, S., Dubessy, J., Kontorovich, A., and Pironon, J., Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, USSR), Eur. J. Mineral., 1992, no. 4, pp. 1187–1202. 11. Istomin, V.E., Mazurov, M.P., and Grishina, S.N., Typomorphism of paramagnetic admixtures in halites from zones of basite–evaporite interaction (Siberian Platform), Geol. Geofiz., 2000, vol. 41, no. 1, pp. 126–143. 12. Lehmann, J. and Rouex, J., Experimental and theoretical study of (Fe2+, Mg)(Al, Fe3+)2O4 spinels: activity—composition relationships, miscibility gaps, vacancy contents, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 1765–1783. 13. Lisitsyn, A.E., Malinko, S.V., Rudnev, V.V., and Fitsev, B.P., Polygenetic genesis of boron mineralization of the Korshunovskoe iron ore deposit, Geol. Rudn. Mestorozhd., 1982, no. 2, pp. 14–19. 14. Mazurov, M.P., Geneticheskie modeli skarnovykh zhelezorudnykh formatsii (Genetic Models of Skarn Iron Ore Formation), Novosibirsk: Nauka, 1985. 15. Mazurov, M.P. and Bondarenko, P.M., Structural–genetic model of the Angara–Ilim-type ore-forming system, Geol. Geofiz., 1997, vol. 38, no. 10, pp. 1584–1593. 16. Mazurov, M.P., Grishina, S.N., Istomin, V.E., and Titov, A.T., Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian Platform, Geol. Ore Deposits, 2007, vol. 49, no. 4, pp. 271–284. 17. Mazurov M.P., Grishina S.N., and Titov A.T. Magnetites from magnesian skarns at dolerite–rock salt contacts, Russ. Geol. Geophys., 2004, vol. 45, no. 10, pp. 1149–1158. 18. Mazurov M.P., Korneva T.A., Zhitova L.M., et al., Iowaite of the Korshunovskoe deposit, Siberian Platform, Zap. Ross. Mineral. O-va, 2000, no. 3, pp. 80–85. 19. Mazurov, M.P. and Nechaev, D.V., Petrogenesis of the trap complex in the Angara–Ilim-type ore-forming systems (Siberian Platform), in Petrologiya magmaticheskikh i metamorficheskikh kompleksov. Materialy nauchnoi konferentsii (Petrology of Magmatic and Metamorphic Complexes. Proceedings of Conference), Tomsk: TsNTI, 2001. Issue 2. pp. 244–246. 20. Mazurov, M.P. and Titov, A.T., Magnesian skarns from zones of layerwise basite injecta in evaporites of the platform cover, Geol. Geofiz., 1999, vol. 40, no. 1, pp. 82–89. 21. Mazurov, M.P. and Titov, A.T., Composition and features of crystallization and transformation of spinels at the contacts of dolerites with dolomites and rock salt, Russ. Geol. Geophys., 2001, vol. 42, no. 7, pp. 1100–1109. 22. Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks), Zharikov, V.A., Rusinov, V.L., Eds., Moscow: Nauchnyi Mir, 1998. 23. Model’nyi analiz razvitiya kontinental’nykh mantiino-korovykh rudoobrazuyushchikh sistem (Model Analysis of the Evolution of Continental Mantle–Crustal Ore-Forming Systems), Sharapov, V.N., Borisenko, A.S., Mazurov, M.P., et al., Eds., Novosibirsk: SO RAN, 2009. 24. Neil, J., Wood, B.J., and Mason, T.O., High-temperature distribution in Fe3O4–MgAl2O4–MnFe2O4–FeAl2O4 spinels from thermopower and conductivity measurements, Am. Mineral., 1989, vol. 74, pp. 339–351. 25. Nikulin, V.I. and Fon-der-Flaass, G.S., New in prediction of iron ore deposits of the Siberian Platform, in Problemy tipizatsii i prognozirovaniya zhelezorudnykh mestorozhdenii (Problems of Typification and Prediction of Iron Ore Deposits), Novosibirsk: Nauka, 1990, pp. 87–104. 26. Pavlov, D.I., Magnetitovoe rudoobrazovanie pri uchastii ekzogennykh khloridnykh vod (Origin of Magnetite Ores with Participation of Exogenic Chloride Waters), Moscow: Nauka, 1975. 27. Pavlov, D.I. and Pek, A.A., Formation of the Angara–Ilimtype iron ore deposits as a result of thermal mobilization of connate brines by regional trap sill, Osnovnye parametry prirodnykh protsessov endogennogo rudoobrazovaniya (Main Parameters of Natural Processes of Endogenous Ore Formation), Novosibirsk: Nauka, 1979, vol. 1, pp. 178–186. 28. Pavlov, D.I. and Ryabchikov, I.D., Dolerites cooling in salt sequence, Izv. Akad. Nauk SSSR, Ser. Geol., 1968, no. 2, pp. 52–63. 29. Pavlov, D.I. and Ryabchikov, I.D., Iron mobilization during interaction of dolerite with concentrated chloride solutions under high temperatures and pressures, Dokl. Akad. Nauk SSSR, 1970, vol. 195, no. 3, pp. 704–706. 30. Pertsev, N.N., Vysokotemperaturnyi metamorfizm i metasomatizm karbonatnykh porod (High-Temperature Metamorphism and Metasomatism of Carbonate Rocks), Moscow: Nauka, 1977. 31. Petrokhimiya bazit-ul’trabazitovykh formatsii paleozoyamezozoya Sibirskoi platformy (Petrochemistry of Paleozoic–Mesozoic Basite–Ultrabasite Formations of the Siberian Platform), Feoktistov, G.D., Eds., Novosibirsk: Nauka, 1999. 32. Pukhnarevich, M.M., Usloviya i osobennosti formirovaniya endogennykh mestorozhdenii zheleza na yuge Sibirskoi platformy (Conditions and Formation of Endogenous Iron Deposits in the southern Siberian Platform), Irkutsk: Irkutsk. Univ., 1986. 33. Semeikina, L.K. and Kozlova, V.N., Mineralogical–petrographic characteristics of the potash rocks of the Nepa Basin, in Obshchie problemy galogeneza (General Problems of Halogenesis), Moscow: Nauka, 1985, pp. 143–148. 34. Shabynin, L.I., Pertsev, N.N., and Zotov, I.A., Voprosy obrazovaniya rudonosnykh skarnov dolomitovykh kontaktov (Problems of the Formation of Ore-Bearing Skarns in the Dolomite Contacts), Moscow: Nauka, 1984. 35. Sharapov, V.N., Fon-der-Flaass, G.S., and Khomenko, A.V., Reaction–thermal interaction with host environment of basite melt during is emplacement in laminated sequences of the Siberian Platform, Geol. Geofiz., 1992, no. 3, pp. 43–57. 36. Skarnovye mestorozhdeniya (Skarn Deposits), Moscow: Nauka, 1985. 248 s. 37. Stolpovskaya, V.N., Mazurov, M.P., Pal’chik, N.A., and Zhitova, L.M., IR-spectroscopy and X-XRD study of clinochlores of the Korshunovskoe deposit, Geol. Geofiz., 1997, no. 7, pp. 1240–1244. 38. Suvorov, V.D., Mishen’kina, Z.R., Petrik, G.V., and Shelud’ko, I.F., Crustal structure of the Angara–Ilim iron ore province: DSS data, Regional. Geol. Metallogen., 2000, no. 10, pp. 229–235. 39. Tsarev, D.I., Metasomatizm (Metasomatism), Ulan-Ude: Izd-vo BNTs SO RAN, 2002. 40. Vakhrushev, V.A., Halite–magnetite ores of the Siberian Platform, Geol. Rudn. Mestorozhd., 1981, no. 6, pp. 100–104. 41. Vakhrushev, V.A., Skarn iron ore deposits of the Siberian Platform, in Skarnovye mestorozhdeniya (Skarn Deposits), Moscow: Nauka, 1985, pp. 186–234. 42. Vakhrushev, V.A. and Vorontsov, A.E., Mineralogiya i geokhimiya zhelezorudnykh mestorozhdenii yuga Sibirskoi platformy (Mineralogy and Geochemistry of the Iron Ore Deposits of the Southern Siberian Platform), Novosibirsk: Nauka, 1976. 43. Zhelezorudnye mestorozhdeniya Sibiri (Iron Ore Deposits of Siberian), Kalugin, A.S. et al., Eds., Novosibirsk: Nauka, 1985. 44. Zhitova, L.M., Mazurov, M.P., and Saharov, V.K., Unique gem variety of clinochlore from Korshunovsk iron ore deposit (eastern Siberia), Abstracts of 16th of IMA, Pisa, Italy, 1994, p. 186.