Инд. авторы: Bortnikova S., Olenchenko V., Gaskova O., Yurkevich N., Abrosimova N., Shevko E., Edelev A., Korneeva T., Provornaya I., Eder L.
Заглавие: Characterization of a gold extraction plant environment in assessing the hazardous nature of accumulated wastes (Kemerovo region, Russia)
Библ. ссылка: Bortnikova S., Olenchenko V., Gaskova O., Yurkevich N., Abrosimova N., Shevko E., Edelev A., Korneeva T., Provornaya I., Eder L. Characterization of a gold extraction plant environment in assessing the hazardous nature of accumulated wastes (Kemerovo region, Russia) // Applied Geochemistry. - 2018. - Vol.93. - P.145-157. - ISSN 0883-2927.
Внешние системы: DOI: 10.1016/j.apgeochem.2018.04.009; РИНЦ: 35484852; SCOPUS: 2-s2.0-85046776860; WoS: 000432656000014;
Реферат: eng: Geochemical and geophysical investigations were performed in the area of the Komsomolsk tailings impoundment. Gold ore tailings produced with cyanidation have been generated by the Komsomolsk Gold Extraction Plant. The relatively low sulfide content in the Komsomolsk tailings and the presence of carbonates result in a low acid production potential (AP) for these tailings. The tailings pond is characterized by neutral to slightly alkaline conditions and metal concentrations, except for those of As and Sb, below the maximum permissible concentration (MPC). The situation is complicated by the fact that the displaced Berikul tailings are stored in the southern part of the Komsomolsk tailings impoundment. Sulfide concentrate cyanidation tailings were produced by the former Berikul Gold Extraction Plant. In the Berikul tailings, the sulfide content is approximately 25%. This high content has resulted in a high AP and the formation of acidic and ultra-acidic surface ponds (pH ∼2) with extremely high concentrations of metals and metalloids (As up to 4.1 g L−1). The estimated duration of acid drainage generated by the Berikul tailings is approximately 2400 years. Surface drainage from the tailings enters the Voskresenka River; as a result, the concentrations of As and Sb in the river water approach the MPCs established by the Russian Ministry of Health. Based on electrical resistivity tomography (ERT), the uncontrolled leakage of acidic and highly mineralized solutions through a natural geological fault into groundwater horizons was revealed. Groundwater contamination was confirmed via an analysis of drinking water from a well located near the fault. © 2018 Elsevier Ltd
Ключевые слова: Economic evaluation; Electrical resistivity tomography; Environmental pollution assessment; Komsomolsk tailings; Alkalinity; Arsenic; Electric conductivity; Russian Federation; Kemerovo; tomography; tailings dam; pollution monitoring; hazard assessment; gold mine; gold; geophysical survey; geochemical survey; electrical resistivity; economic analysis; concentration (composition); chemical environmental conditions; arsenic; Ore tailings; Sulfide concentrates; Metals and metalloids; Metal concentrations; Maximum permissible concentration; Groundwater contamination; Environmental pollutions; Electrical resistivity tomography; Economic evaluations; Sulfur compounds; River pollution; Potable water; Ores; Ore treatment; Groundwater pollution; Groundwater; Extraction; Lakes; Arsenic;
Издано: 2018
Физ. характеристика: с.145-157
Цитирование: 1. Abrosimova, N., Bortnikova, S., Gas'kova, O., Yurkevich, N., Ribkina, E., Results of mine tailings – water interaction: a column leaching study on the example of waste materials of Komsomolsky Gold Processing Plant. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 18–24 Jun 2015, 2015 Available at: https://sgemworld.at/sgemlib/spip.php?article6354. 2. Abrosimova, N., Gaskova, O., Loshkareva, A., Edelev, A., Bortnikova, S., Assessment of the acid mine drainage potential of waste rocks at the Ak-Sug porphyry Cu-Mo deposit. J. Geochem. Explor. 157 (2015), 1–14 https://dx.doi:10.1016/j.gexplo.2015.05.009. 3. Alabin, L.V., Kalinin, Yu.A., Gold Metallogeny of Kuznetsk Alatau. 1999, Publishing House, United Institute of Geology, Geophysics, and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 234. 4. Armienta, M.A., Villaseñor, G., Cruz, O., Ceniceros, N., Aguayo, A., Morton, O., Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zimapán. Central Mexico. Appl. Geochem. 27 (2012), 2225–2237 https://dx.doi:10.1016/j.apgeochem.2012.01.015. 5. Asta, M.P., Ayora, C., Román-Ross, G., Cama, J., Acero, P., Gault, A.G., Charnock, J.M., Bardelli, F., Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem. Geol. 271 (2010), 1–12 https://dx.doi:10.1016/j.chemgeo.2009.12.005. 6. Bailey, B.L., Blowes, D.W., Smith, L., Sego, D.C., The Diavik Waste Rock Project: geochemical and microbiological characterization of drainage from low-sulfide waste rock: active zone field experiments. Appl. Geochem. 62 (2015), 18–34 https://dx.doi:10.1016/j.apgeochem.2015.02.014. 7. Balci, N., Demirel, C., Prediction of acid mine drainage (AMD) and metal release sources at the Küre Copper Mine Site, Kastamonu, NW Turkey. Mine Water Environ. 37:1 (2018), 56–74 https://doi.org/10.1007/s10230-017-0470-4. 8. Balkov, E.V., Panin, G.L., Manshtein, Y.A., Manshtein, A.K., Beloborodov, V.A., Electrotomography: equipment, technique, and application. Geophysics 6 (2012), 54–63. 9. Ball, J.W., Nordstrom, D.K., User's Manual for WATEQ4F, with Revised Thermody Namic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters: United States Geological Survey Open-file Report 91-183., 1991, United States Geological Survey, Menlo Park, California. 10. Baryshev, V.A., Kolmogorov, Y.P., Kulipanov, G.N., Scrinsky, A.N., X-ray fluorescent method with synchrotron radiation. J. Anal. Chem. 41 (1986), 389–401 https://dx.doi:10.1016/0168-9002(86)90183-X. 11. Blowes, D.W., Jambor, J.L., Hanton-Fong, C.J., Lortie, L., Gould, W.D., Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Appl. Geochem. 13 (1998), 687–705 https://dx.doi:10.1016/S0883-2927(98)00009-2. 12. Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., Paktunc, D., Gould, W.D., Johnson, D.B., The Geochemistry of Acid Mine Drainage. Treatise on Geochemistry. second ed., 2014, Elsevier, Oxford, 131–190 https://doi.org/10.1016/B978-0-08-095975-7.00905-0. 13. Bobachev, A.A., Gorbunov, A.A., Two-dimensional electric resistivity and induced polarization survey: equipment, technique, and software. Razvedka Ohrana Nedr. 12 (2005), 52–54. 14. Bodénan, F., Baranger, P., Piantone, P., Lassin, A., Azaroual, M., Gaucher, E., Braibant, G., Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signatures. Appl. Geochem. 19 (2004), 1785–1800 https://dx.doi:10.1016/j.apgeochem.2004.03.012. 15. Bortnikova, S., Gaskova, O., Airiyants, A., Technogenic Lakes Substance Accumulation, Evolution, and Influence on the Environment. 2003, Academic publishing house “Geo”, Novosibirsk. 16. Bortnikova, S., Gaskova, O., Bessonova, E., Geochemistry of Technogenic System. 2006, Academic publishing house “Geo”, Novosibirsk. 17. Bortnikova, S.B., Gas'kova, O.L., Prisekina, N.A., Geochemical estimation of the potential danger of waste rocks from the Veduginskoe deposit. Geochem. Int. 48 (2010), 280–294 https://dx.doi:10.1134/S0016702910030055. 18. Bortnikova, S., Bessonova, E., Gaskova, O., Geochemistry of arsenic and metals in stored tailings of a Co-Ni arsenide-ore, Khovu-Aksy area, Russia. Appl. Geochem. 27 (2012), 2238–2250 https://dx.doi:10.1016/j.apgeochem.2012.02.033. 19. Bowell, R.J., Bruce, I., Geochemistry of iron ochres and mine waters from Levant Mine. Cornwall. Appl. Geochem. 10 (1995), 237–250 https://dx.doi:10.1016/0883-2927(94)00036-6. 20. Casiot, C., Morin, G., Juillot, F., Bruneel, O., Personné, J.-C., Leblanc, M., Duquesne, K., Bonnefoy, V., Elbaz-Poulichet, F., Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res. 37 (2003), 2929–2936 https://dx.doi:10.1016/S0043-1354(03)00080-0. 21. Çelebi, E.E., Öncel, M.S., Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). J. African Earth Sci. 124 (2016), 487–496 https://dx.doi:10.1016/j.jafrearsci.2016.09.014. 22. Cheng, Y.-Y., Huang, N.-C., Chang, Y.-T., Sung, J.-M., Shen, K.-H., Tsai, C.-C., Guo, H.-R., Associations between arsenic in drinking water and the progression of chronic kidney disease: a nationwide study in Taiwan. J. Hazard Mater. 321 (2017), 432–439 https://dx.doi:10.1016/j.jhazmat.2016.09.032. 23. Choong, T.S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L., Azni, I., Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217 (2007), 139–166 https://dx.doi:10.1016/j.desal.2007.01.015. 24. Cidu, R., Biddau, R., Dore, E., Vacca, A., Marini, L., Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Sci. Total Environ. 497–498 (2014), 319–331 https://dx.doi:10.1016/j.scitotenv.2014.07.117. 25. Cidu, R., Da Pelo, S., Frau, F., Legacy of cyanide and ARD at a low-scale gold mine (Furtei, Italy). Mine Water Environ. 32:2 (2013), 74–83 https://dx.doi:10.1007/s10230-012-0209-1. 26. Courtin-Nomade, A., Bril, H., Neel, C., Lenain, J.-F., Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguialès, Aveyron, France. Appl. Geochem. 18 (2003), 395–408 https://dx.doi:10.1016/S0883-2927(02)00098-7. 27. Courtin-Nomade, A., Grosbois, C., Bril, H., Roussel, C., Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl. Geochem. 20 (2005), 383–396 https://dx.doi:10.1016/j.apgeochem.2004.08.002. 28. Cravotta, C.A., Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Appl. Geochem. 23 (2008), 166–202 https://dx.doi:10.1016/j.apgeochem.2007.10.011. 29. Cullen, W.R., Reimer, K.J., Arsenic speciation in the environment. Chem. Rev. 89 (1989), 713–764 https://dx.doi:10.1021/cr00094a002. 30. Dauetas, A.A., Denisyuk, I.I., Kuzmenko, A.A., Vorobev, V.D., Seismic Effects of Blasting in Rock. 1993, CRC Press. 31. Development Assessment Branch, Final Screening Report Ketza River Mine Care and Maintenance Water Licence Application., 2005. 32. Dousova, B., Buzek, F., Rothwell, J., Krejcova, S., Lhotka, M., Adsorption behavior of arsenic relating to different natural solids: soils, stream sediments and peats. Sci. Total Environ. 433 (2012), 456–461. 33. Drahota, P., Filippi, M., Secondary arsenic minerals in the environment: a review. Environ. Int. 35 (2009), 1243–1255 https://dx.doi:10.1016/j.envint.2009.07.004. 34. Druschel, G.K., Baker, B.J., Gihring, T.M., Banfield, J.F., Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem. Trans. 5 (2004), 13–32 https://dx.doi:10.1186/1467-4866-5-13. 35. Edraki, M., Golding, S.D., Baublys, K.A., Lawrence, M.G., Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Appl. Geochem. 20 (2005), 789–805 https://dx.doi:10.1016/j.apgeochem.2004.11.004. 36. El Adnani, M., Plante, B., Benzaazoua, M., Hakkou, R., Bouzahzah, H., Tailings weathering and arsenic mobility at the abandoned Zgounder Silver Mine, Morocco. Mine Water Environ. 35 (2016), 508–524 https://dx.doi:10.1007/s10230-015-0370-4. 37. Elwood Madden, M.E., Madden, A.S., Rimstidt, J.D., Zahrai, S., Kendall, M.R., Miller, M.A., Jarosite dissolution rates and nanoscale mineralogy. Geochim. Cosmochim. Acta. 91 (2012), 306–321 https://dx.doi:10.1016/j.gca.2012.05.001. 38. Fan, C.-S., Tseng, S.-C., Li, K.-C., Hou, C.-H., Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. J. Hazard Mater. 312 (2016), 208–215 https://dx.doi:10.1016/j.jhazmat.2016.03.055. 39. Foster, A.L., Brown, G.E., Tingle, T.N., Parks, G.A., Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am. Min. 83 (1998), 553–568 https://dx.doi:10.2138/am-1998-5-616. 40. Frau, F., The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineral. Mag. 64 (2000), 995–1006 https://dx.doi:10.1180/002646100550001. 41. Fu, Z., Wu, F., Mo, C., Deng, Q., Meng, W., Giesy, J.P., Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Sci. Total Environ. 539 (2016), 97–104 https://dx.doi:10.1016/j.scitotenv.2015.08.146. 42. Fuller, C.C., Davis, J.A., Waychunas, G.A., Surface chemistry of ferrihydrite: Part 2. kinetics of arsenate adsorption and coprecipitation. Geochem. Cosmochim. Acta 57 (1993), 2271–2282. 43. Gadde, R.R., Laitinen, H.A., Heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 46:13 (1974), 2022–2026. 44. Gas'kova, O.L., Bortnikova, S.B., Airiyants, A.A., Kolmogorov, Y.P., Pashkov, M.V., Geochemical features of an anthropogenic impoundment with cyanidation wastes of gold-arsenopyrite-quartz ores. Geochem. Int. 38 (2000), 281–291. 45. Gas'kova, O.L., Shironosova, G.P., Bortnikova, S.B., Thermodynamic estimation of the stability field of bukovskyite, an iron sulfoarsenate. Geochem. Int. 46:1 (2008), 85–91. 46. Gault, A.G., Cooke, D.R., Townsend, A.T., Charnock, J.M., Polya, D.A., Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. Sci. Total Environ. 345 (2005), 219–228 https://dx.doi:10.1016/j.scitotenv.2004.10.030. 47. Gemici, Ü., Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Alaşehir, Turkey). Environ. Monit. Assess. 147 (2008), 93–106 https://dx.doi:10.1007/s10661-007-0101-9. 48. Gieré, R., Sidenko, N., Lazareva, E., The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl. Geochem. 18 (2003), 1347–1359 https://dx.doi:10.1016/S0883-2927(03)00055-6. 49. Girusov, E.V., Bobylev, S.N., Novoselov, A.L., Chepurny, N.V., Ecology and Economics of Environmental Management. 2003, UNITY-DANA, Edinstvo, Moscow. 50. GR, The Procedure for Determining the Prevented Environmental Damage, Approved by the Order of the State Ecology Committee of 30.11. 1999, Goscomecologia of Russia, Moscow 1999. 51. GR, Engineering Geological Investigations for Construction. Part 6. Rules of Carrying Out Geophysical Investigations SP 11-105-97. 2004, Gosstroy Rossii, Moscow. 52. Haffert, L., Craw, D., Processes of attenuation of dissolved arsenic downstream from historic gold mine sites. New Zealand. Sci. Total Environ. 405 (2008), 286–300 https://dx.doi:10.1016/j.scitotenv.2008.06.058. 53. Hiller, E., Tóth, R., Kučerová, G., Jurkovič, Ľ., Šottník, P., Lalinská-Voleková, B., Vozár, J., Geochemistry of mine tailings from processing of siderite-Cu ores and mobility of selected metals and metalloids evaluated by a pot leaching experiment at the Slovinky Impoundment, Eastern Slovakia. Mine Water Environ. 35 (2016), 447–461 https://dx.doi:10.1007/s10230-016-0388-2. 54. Kazakis, N., Kantiranis, N., Kalaitzidou, K., Kaprara, E., Mitrakas, M., Frei, R., Vargemezis, G., Tsourlos, P., Zouboulis, A., Filippidis, A., Origin of hexavalent chromium in groundwater: the example of Sarigkiol Basin. Northern Greece. Sci. Total Environ. 593–594 (2017), 552–566 https://dx.doi:10.1016/j.scitotenv.2017.03.128. 55. Kefeni, K.K., Msagati, T.A., Mamba, B.B., Acid mine drainage: prevention, treatment options, and resource recovery: a review. J. Clean. Prod. 151 (2017), 475–493. 56. Kirillov, M.V., Bortnikova, S.B., Gaskova, O.L., Authigenic gold formation in the cyanidation tailings of gold–arsenopyrite–quartz ore of Komsomolsk deposit (Kuznetski Alatau, Russia). Environ. Earth Sci., 75, 2016, 1050 https://dx.doi:10.1007/s12665-016-5852-6. 57. Komárek, M., Vaněk, A., Ettler, V., Chemical stabilization of metals and arsenic in contaminated soils using oxides-a review. Environ. Pollut. 172 (2013), 9–22. 58. Korneeva, T.V., Yurkevich, N.V., Aminov, P.G., Geochemical features of migration flows in the impact zone of mining technogenesis (Mednogorsk). Bull. Tomsk Polytech. Univ. Geo Assets Eng. 328 (2017), 85–94. 59. Lazareva, E.V., Bortnikova, S.B., Kolmogorov, U.P., Kireev, A.G., Tsimbalist, V.G., Metal redistribution within the sulfide tailings body. Proceedings of the 5th International Symposium on the Geochemistry of the Earth Surface, 1999 https://www.crcpress.com/Geochemistry-of-the-Earths-Surface-Proceedings-of-the-5th-international/Armannsson/p/book/9789058090737. 60. Loke, M.H., Electrical Imaging Surveys for Environmental and Engineering Studies, a Practical Guide to 2D and 3D Surveys. 2000 (Penang, Malaysia). 61. Lottermoser, B.G., Mine Wastes. Characterization, Treatment, Environmental Impacts. second ed., 2010, Springer-Verlag, Berlin Heidelberg, 335. 62. Marszałek, H., Wąsik, M., Influence of arsenic-bearing gold deposits on water quality in Zloty Stok mining area (SW Poland). Environ. Geol. 39 (2000), 888–892 https://dx.doi:10.1007/s002549900036. 63. Martín-Crespo, T., Martín-Velázquez, S., Gómez-Ortíz, D., A geochemical and geophysical characterization of sulfide mine ponds at the Iberian Pyrite Belt (Spain). Water, Air, Soil Pollut. 217 (2010), 387–405 https://dx.doi.org/10.1007/s11270-010-0595-6. 64. Martin-Crespo, T., Gomez-Ortiz, D., Martin-Velazquez, S., Maria Esbri, J., de Ignacio-San Jose, C., Jose Sanchez-Garcia, M., Montoya-Montes, I., Martin-Gonzalez, F., Abandoned mine tailings in cultural itineraries: don Quixote Route (Spain). Eng. Geol. 197 (2015), 82–93 https://dx.doi.org/10.1016/j.enggeo.2015.08.008. 65. Martínez, J., Rey, J., Hidalgo, M.C., Benavente, J., Characterizing abandoned mining dams by geophysical (ERI) and geochemical methods: the Linares-La Carolina district (southern Spain). Water, Air, Soil Pollut. 223 (2012), 2955–2968 https://doi.org/10.1007/s11270-012-1079-7. 66. Martínez, J., Hidalgo, M.C., Rey, J., Garrido, J., Kohfahl, C., Benavente, J., Rojas, D., A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. J. Geochem. Explor. 162 (2016), 62–71 https://doi.org/10.1016/j.gexplo.2015.12.013. 67. Martínez-Pagán, P., Faz, A., Acosta, J.A., Carmona, D.M., Martínez-Martínez, S., A multidisciplinary study for mining landscape reclamation. a study case on two tailing ponds in the region of Murcia (SE Spain). Phys. Chem. Earth, Parts A/B/C 36 (2011), 1331–1344 https://doi.org/10.1016/j.pce.2011.02.007. 68. Meck, M., Love, D., Mapani, B., Zimbabwean mine dumps and their impacts on river water quality – a reconnaissance study. Phys. Chem. Earth, Parts A/B/C 31 (2006), 797–803 https://dx.doi:10.1016/j.pce.2006.08.029. 69. Mondal, P., Majumder, C.B., Mohanty, B., Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard Mater. 137 (2006), 464–479 https://dx.doi:10.1016/j.jhazmat.2006.02.023. 70. Murray, J., Kirschbaum, A., Dold, B., Guimaraes, E.M., Miner, E.P., Jarosite versus soluble iron-sulfate formation and their role in acid mine drainage formation at the pan de Azúcar Mine Tailings (Zn-Pb-Ag), NW Argentina. Mineral 4 (2014), 477–502 https://dx.doi:10.3390/min4020477. 71. Nguyen, V.K., Tran, T., Han, H.-J., Lee, S.-H., Lee, J.-U., Possibility of bacterial leaching of antimony, chromium, copper, manganese, nickel, and zinc from contaminated sediment. J. Geochem. Explor. 156 (2015), 153–161 https://dx.doi:10.1016/j.gexplo.2015.05.012. 72. Nordstrom, D.K., Thermochemical redox equilibria of ZoBell's solution. Geochem. Cosmochim. Acta 41 (1977), 1835–1841 https://dx.doi:10.1016/0016-7037(77)90215-0. 73. Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W., Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol. 34:2 (2000), 254–258. 74. Olenchenko, V.V., Kucher, D.O., Bortnikova, S.B., Gas'kova, O.L., Edelev, A.V., Gora, M.P., Vertical and lateral spreading of highly mineralized acid drainage solutions (Ur dump, Salair): electrical resistivity tomography and hydrogeochemical data. Russ. Geol. Geophys. 57 (2016), 617–628 https://dx.doi:10.1016/j.rgg.2015.05.014. 75. Paktunc, A.D., Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ. Geol. 39:2 (1999), 103–112. 76. Paktunc, D., Foster, A., Laflamme, G., Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Environ. Sci. Technol. 37:10 (2003), 2067–2074 https://doi:10.1021/es026185m. 77. Paktunc, D., Foster, A., Heald, S., Laflamme, G., Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochem. Cosmochim. Acta 68:5 (2004), 969–983 https://doi:10.1016/j.gca.2003.07.013. 78. Placencia-Gómez, E., Parviainen, A., Hokkanen, T., Loukola-Ruskeeniemi, K., Integrated geophysical and geochemical study on AMD generation at the Haveri Au-Cu mine tailings, SW Finland. Environ. Earth Sci. 61 (2010), 1435–1447 https://doi.org/10.1007/s12665-010-0459-9. 79. Quansah, R., Armah, F.A., Essumang, D.K., Luginaah, I., Clarke, E., Marfo, K., Cobbina, S.J., Nketiah-Amponsah, E., Namujju, P.B., Obiri, S., Dzodzomenyo, M., Association of arsenic with adverse pregnancy outcomes-infant mortality: a systematic review and meta-analysis. Environ. Health Perspect. 123 (2015), 412–421 https://dx.doi:10.1289/ehp.1307894. 80. Qureshi, A., Jia, Y., Maurice, C., Öhlander, B., Potential of fly ash for neutralisation of acid mine drainage. Environ. Sci. Pollut. Res. 23 (2016), 17083–17094 https://dx.doi:10.1007/s11356-016-6862-3. 81. Ravengai, S., Love, D., Mabvira-Meck, M., Musiwa, K., Moyce, W., Water quality in an abandoned gold mining belt, Beatrice, Sanyati Valley, Zimbabwe. Phys. Chem. Earth, Parts A/B/C 30 (2005), 826–831 https://dx.doi:10.1016/j.pce.2005.08.026. 82. Ritchie, V.J., Ilgen, A.G., Mueller, S.H., Trainor, T.P., Goldfarb, R.J., Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chem. Geol. 335 (2013), 172–188 https://dx.doi:10.1016/j.chemgeo.2012.10.016. 83. RMH, Maximum Permissible Concentration (MPC) of Chemical Substances in the Water of Drinking and Cultural-domestic Water Objects HN 2.1.5.1315-03, 2003. 2003, Russian Ministry of Health, Moscow, Russia. 84. Romero, F.M., Prol-Ledesma, R.M., Canet, C., Alvares, L.N., Pérez-Vázquez, R., Acid drainage at the inactive Santa Lucia mine, western Cuba: natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements. Appl. Geochem. 25 (2010), 716–727, 10.1016/j.apgeochem.2010.02.004. 85. Roussel, C., Néel, C., Bril, H., Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ. 263 (2000), 209–219 https://dx.doi:10.1016/S0048-9697(00)00707-5. 86. Saryg-ool, B.Y., Myagkaya, I., Kirichenko, I., Gustaytis, M., Shuvaeva, O., Zhmodik, S., Lazareva, E., Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochem. Min. Sci. Total Environ. 581–582 (2017), 460–471 https://dx.doi:10.1016/j.scitotenv.2016.12.154. 87. Savage, K.S., Tingle, T.N., O'Day, P.A., Waychunas, G.A., Bird, D.K., Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California. Appl. Geochem. 15 (2000), 1219–1244 https://dx.doi:10.1016/S0883-2927(99)00115-8. 88. Savichev, O.G., Regional peculiarities of chemical composition of Siberian sewage and taking such peculiarities into account in the standardization of sewage disposal. Water Chem. Ecol. 1 (2014), 41–46. 89. Shuvaeva, O.V., Bortnikova, S.B., Korda, T.M., Lazareva, E.V., Arsenic speciation in a contaminated gold processing tailings dam. Geostand. Geoanal. Res. 24 (2000), 247–252 https://dx.doi:10.1111/j.1751-908X.2000.tb00776.x. 90. Shvartsev, S.L., Rasskazov, N.M., Savichev, O.G., Contents and migration forms of elements in natural waters of the Mid-Tom' basin. Rus. Geol. Geophys., 12, 1997, 1955. 91. Sidenko, N.V., Lazareva, E.V., Bortnikova, S.B., Kireev, A.D., Sherriff, B.L., Geochemical and mineralogical zoning of high-sulfide mine-waste at the Berikul mine-site, Kemerovo region, Russia. Can. Mineral. 43 (2005), 1141–1156 https://dx.doi:10.2113/gscanmin.43.4.1141. 92. Simmler, M., Suess, E., Christl, I., Kotsev, T., Kretzschmar, R., Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Sci. Total Environ. 572 (2016), 742–754 https://dx.doi:10.1016/j.scitotenv.2016.07.049. 93. Skousen, J., Simmons, J., McDonald, L.M., Ziemkiewicz, P., Acid-base accounting to predict post-mining drainage quality on surface mines. J. Environ. Qual. 31 (2002), 2034–2044 https://dx.doi:10.2134/jeq2002.2034. 94. Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E., Wright, K., Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: insights from batch experiments and computational modelling. Geochem. Cosmochim. Acta 70 (2006), 608–621 https://dx.doi:10.1016/j.gca.2005.09.024. 95. Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M., Field and Laboratory Methods Applicable to Overburden and Mine Soils. 1978 US EPA 600/2-78-054. 96. Strosnider, W.H.J., Llanos López, F.S., Nairn, R.W., Acid mine drainage at Cerro Rico de Potosí I: unabated high-strength discharges reflect a five century legacy of mining. Environ. Earth Sci. 64 (2011), 899–910 https://dx.doi:10.1007/s12665-011-0996-x. 97. Tolaymat, T., El Badawy, A., Sequeira, R., Genaidy, A., An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. J. Hazard Mater. 298 (2015), 270–281 https://dx.doi:10.1016/j.jhazmat.2015.04.019. 98. Tycholiz, C., Ferguson, I.J., Sherriff, B.L., Cordeiro, M., Sri Ranjan, R., Pérez-Flores, M.A., Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada. J. Appl. Geophys. 131 (2016), 29–40 https://dx.doi:10.1016/j.jappgeo.2016.05.006. 99. Walker, F.P., Schreiber, M.E., Rimstidt, J.D., Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochem. Cosmochim. Acta 70 (2006), 1668–1676. 100. Wang, S., Mulligan, C.N., Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci. Total Environ. 366 (2006), 701–721 https://dx.doi:10.1016/j.scitotenv.2005.09.005. 101. Wei, X., Rodak, C.M., Zhang, S., Han, Y., Wolfe, F.A., Mine drainage generation and control options. Water Environ. Res. 88:10 (2016), 1409–1432. 102. Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R., Beavis, S.G., Jarosite dissolution II-Reaction kinetics, stoichiometry and acid flux. Chem. Geol. 254 (2008), 73–86 https://dx.doi:10.1016/j.chemgeo.2008.06.010. 103. WHO, Background Document for Preparation of WHO Guidelines for Drinking-Water Quality. fourth ed., 2011, World Health Organization, Geneva. 104. Woo, N.C., Choi, M.J., Arsenic and metal contamination of water resources from mining wastes in Korea. Environ. Geol. 40 (2001), 305–311 https://dx.doi:10.1007/s002540000161. 105. Yurkevich, N.V., Saeva, O.P., Karin, Y.G., Geochemical anomalies in two sulfide-bearing waste disposal areas: Fe, Cu, Zn, Cd, Pb, and as in contaminated waters and snow, Kemerovo and Chelyabinsk regions, Russia. Toxicol. Environ. Chem. 97 (2015), 76–89 https://dx.doi:10.1080/02772248.2015.1041955. 106. Yurkevich, N., Bortnikova, S., Olenchenko, V., Abrosimova, N., Saeva, O., Karin, Y., Study of water-rock interaction in sulfide mining tailings using geochemical and geoelectrical methods. Procedia. Earth Planet. Sci. 17 (2017), 112–115 https://dx.doi:10.1016/j.proeps.2016.12.019. 107. Yurkevich, N.V., Abrosimova, N.A., Bortnikova, S.B., Karin, Y.G., Saeva, O.P., Geophysical investigations for evaluation of environmental pollution in a mine tailings area. Toxicol. Environ. Chem. 99:9–10 (2017), 1328–1345 https://doi.org/10.1080/02772248.2017.1371308. 108. Zarroca, M., Linares, R., Velásquez-López, P.C., Roqué, C., Rodríguez, R., Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo. Ecuador. J. Appl. Geophys. 113 (2015), 103–113 https://doi.org/10.1016/j.jappgeo.2014.11.022.