Инд. авторы: Pustovarov V.A., Ogorodnikov I.N., Kozlov A.V., Isaenko L.I.
Заглавие: A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals
Библ. ссылка: Pustovarov V.A., Ogorodnikov I.N., Kozlov A.V., Isaenko L.I. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals // Optical Materials. - 2018. - Vol.80. - P.47-56. - ISSN 0925-3467. - EISSN 1873-1252.
Внешние системы: DOI: 10.1016/j.optmat.2018.04.027; РИНЦ: 35500051; SCOPUS: 2-s2.0-85046010033; WoS: 000435053600007;
Реферат: eng: Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7–400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7–22 eV) were determined. The luminescence spectra (1.2–6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7–22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7–400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified. © 2018 Elsevier B.V.
Ключевые слова: Low-temperature reflection; Luminescence spectra; Oxyfluoride Rb2KTiOF5; Thermoluminescence; UV-optical spectroscopy; Electronic structure; Excited states; Light absorption; Radiation effects; Rubidium compounds; Single crystals; Vacuum ultraviolet Light; Oxyfluorides; Optical spectroscopy; Luminescence spectrum; Luminescence decay kinetics; Low temperatures; Exponential components; Titanium compounds; Thermoluminescence; Temperature distribution; Synchrotron radiation; Visible spectral regions; Electronic structure parameters;
Издано: 2018
Физ. характеристика: с.47-56
Цитирование: 1. Pausewang, G., Rüdorff, W., Z. Anorg. Allg. Chem., 364, 1969, 69. 2. Ravez, J., Peraudeau, G., Arend, H., Abrahams, S.C., Hagenmuller, P., Ferroelectrics, 26, 1980, 767. 3. Grannec, J., Yacoubi, A., Linke, D., Tressaud, A., Hagenmuller, P., J. Fluorine Chem., 29, 1985, 59. 4. Marvel, M.R., Lesage, J., Baek, J., Halasyamani, P.S., Stern, C.L., Poeppelmeier, K.R., J. Am. Chem. Soc., 129, 2007, 13963. 5. Flerov, I.N., Gorev, M.V., Tressaud, A., Laptash, N.M., Crystallogr. Rep., 56, 2011, 9. 6. Sorokina, N.I., Voronkova, V.I., Crystallogr. Rep., 52, 2007, 80. 7. Atuchin, V.V., Isaenko, L.I., Kesler, V.G., Kang, L., Lin, Z., Molokeev, M.S., Yelisseyev, A.P., Zhurkov, S.A., J. Phys. Chem. C, 117, 2013, 7269. 8. Ghoohestani, M., Arab, A., Hashemifar, S.J., Sadeghi, H., J. Appl. Phys., 123, 2018 015702. 9. Fokina, V.D., Flerov, I.N., Molokeev, M.S., Pogorel'tsev, E.I., Bogdanov, E.V., Krylov, A.S., Bovina, A.F., Voronov, V.N., Laptash, N.M., Phys. Solid State, 50, 2008, 2175. 10. Udovenko, A.A., Laptash, N.M., Acta Crystallogr. B, 67, 2011, 447. 11. Atuchin, V.V., Isaenko, L.I., Kesler, V.G., Lin, Z.S., Molokeev, M.S., Yelisseyev, A.P., Zhurkov, S.A., J. Solid State Chem., 187, 2012, 159. 12. Gorev, M.V., Flerov, I.N., Bogdanov, E.V., Voronov, V.N., Laptash, N.M., Phys. Solid State, 52, 2010, 377. 13. Gorev, M.V., Bogdanov, E.V., Flerov, I.N., Voronov, V.N., Laptash, N.M., Ferroelectrics, 397, 2010, 76. 14. Kozlov, A.V., Pustovarov, V.A., Sarychev, M.N., Isaenko, L.I., AIP Conf. Proc., 1886, 2017, 020012. 15. Zimmerer, G., Radiat. Meas., 42, 2007, 859. 16. Urbach, F., Phys. Rev., 92, 1953, 1324. 17. Martienssen, H.W., J. Phys. Chem. Solid., 2, 1957, 257. 18. Pustovarov, V.A., Ogorodnikov, I.N., Ospanbekov, E.A., J. Opt. Soc. Am. B-Opt. Physics, 32, 2015, 241. 19. Lucarini, V., Saarinen, J.J., Peiponen, K.E., Vartiainen, E.M., Kramers-Krönig Relations in Optical Materials Research. 2005, Springer-Verlag, Berlin, Heidelberg. 20. Born, M., Wolf, E., Principles of Optics. 1980, Pergamon, New York. 21. Pines, D., Elementary Excitation in Solids. 1963, W. A. Benjamin, N.-Y.–Amsterdam. 22. Song, A.K.S., Williams, R.T., Self-trapped Excitons. 1996, Springer-Verlag, Berlin-Heidelberg, New York. 23. Mürk, V., Mater. Sci. Forum, 239–241, 1997, 537. 24. Cord, A., Holfstaltter, A., Scharmann, A., Phys. Status Solidi, 106, 1981, 499. 25. Dehnicke, K., Pausewang, G., Rüdorff, W., Z. Anorg. Allg. Chem., 366, 1969, 64. 26. Yakovyna, V., Zhydachevskii, Ya, Mikhailik, V.B., Solskii, I., Sugak, D., Vakiv, M., Opt. Mater., 30(10), 2008, 1630. 27. Treadaway, M.J., Powell, R.C., J. Chem. Phys., 61, 1974, 4003. 28. Lammers, M.J.J., Blasse, G., Robertson, D.S., Phys. Status Solidi, 63, 1981, 569. 29. Chukova, O., Nedilko, S., Opt. Mater., 35, 2013, 1735. 30. Bohacek, P., Zazubovich, S., Solovieva, N., Nikl, M., Opt. Mater., 30(1), 2007, 66. 31. Blasse, G., Schipper, W.J., Phys. Status Solidi, 25, 1974, K163. 32. Grasser, R., Scharmann, A., Strack, K.-R., J. Lumin., 27, 1982, 263.