Инд. авторы: Romanenko A.V., Rashchenko S.V., Goryainov S.V., Likhacheva A.Y., Korsakov A.V.
Заглавие: In Situ Raman Study of Liquid Water at High Pressure
Библ. ссылка: Romanenko A.V., Rashchenko S.V., Goryainov S.V., Likhacheva A.Y., Korsakov A.V. In Situ Raman Study of Liquid Water at High Pressure // Applied Spectroscopy. - 2018. - Vol.72. - Iss. 6. - P.847-852. - ISSN 0003-7028.
Внешние системы: DOI: 10.1177/0003702817752487; РИНЦ: 35704913; SCOPUS: 2-s2.0-85044042830; WoS: 000434314700003;
Реферат: eng: A pressure shift of Raman band of liquid water (H2O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H2O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H2O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H2O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H2O at this pressure. The most convenient approach for pressure calibration is the use of “a linear background + one Gaussian” decomposition (the pressure can be measured using the formula P (GPa) = −0.0317(3)·ΔνG (cm−1), where ΔνG represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure). © 2018, The Author(s) 2018.
Ключевые слова: Structural transitions; Pressure-induced structural transitions; Pressure calibration; Liquid water; High pressure cells; High pressure; Gaussian components; Diamond-anvil cell; Water; Liquids; Gaussian distribution; Water; Raman spectroscopy; liquid water structure; high pressure; H2O; diamond anvil cell; Raman spectroscopy; High pressure engineering;
Издано: 2018
Физ. характеристика: с.847-852
Цитирование: 1. Choukroun M., Grasset O., “Thermodynamic Model for Water and High-Pressure Ices Up To 2.2 GPa and down to the Metastable Domain”. J. Chem. Phys. 2007. 127(12): 124506. 2. Kagi H., Kiyasu A., Akagi T., Nara M., “Near-Infrared Spectroscopic Determination of Salinity and Internal Pressure of Fluid Inclusions in Minerals”. Appl. Spectrosc. 2006. 60(4): 430–436. 3. Yang Y., Zheng H., Sun Q., Li J., “Determination of the Internal Pressure of Fluid Inclusions by Using Raman Spectroscopy”. Appl. Spectrosc. 2013. 67(7): 808–812. 4. Sun Q., “Raman Spectroscopic Study of the Effects of Dissolved NaCl on Water Structure”. Vib. Spectrosc. 2012. 62: 110–114. 5. Fraley P.E., Rao K.N., “High Resolution Infrared Spectra of Water Vapor: ν1 and ν3 Band of H2 16O”. J. Mol. Spectrosc. 1969. 29(1–3): 348–364. 6. Sun Q., “Local Statistical Interpretation for Water Structure”. Chem. Phys. Lett. 2013, pp. 568–569. 90–94. 7. Sun Q., “The Raman OH Stretching Bands of Liquid Water”. Vib. Spectrosc. 2009. 51(2): 213–217. 8. Walrafen G.E., Abebe M., “Raman Studies of the Bending and Librational Bands from Water and Ice VI to ∼12 kbar at 32℃”. J. Chem. Phys. 1978. 68(10): 4694–4695. 9. Cavaille D., Combes D., Zwick A., “Effect of High Hydrostatic Pressure and Additives on the Dynamics of Water: a Raman Spectroscopy Study”. J. Raman Spectrosc. 1996. 27(11): 853–857. 10. Le Losq C., Dalou C., Mysen B.O., “In Situ Study at High Pressure and Temperature of the Environment of Water in Hydrous Na and Ca Aluminosilicate Melts and Coexisting Aqueous Fluids: In Situ Study of Hydrous Silicate Melts”. J. Geophys. Res. Solid Earth. 2017. 122(7): 4888–4899. 11. Sun Q., Zheng H., Xu J., Hines E., “Raman Spectroscopic Studies of the Stretching Band from Water up to 6 kbar at 290 K”. Chem. Phys. Lett. 2003. 379(5–6): 427–43. 12. Okada T., Komatsu K., Kawamoto T., Yamanaka T., “Pressure Response of Raman spectra of Water and its Implication to the Change in Hydrogen Bond Interaction”. Spectrochim. Acta, Part A. 2005. 61(10): 2423–2427. 13. Kawamoto T., Ochiai S., Kagi H., “Changes in the Structure of Water Deduced from the Pressure Dependence of the Raman OH Frequency”. J. Chem. Phys. 2004. 120(13): 5867–5870. 14. Okhulkov A.V., Demianets Y.N., Gorbaty Y.E., “X-ray Scattering in Liquid Water at Pressures of up to 7.7 kbar: Test of a Fluctuation Model”. J. Chem. Phys. 1994. 100(2): 1578–1588. 15. Kalinichev A.G., Gorbaty Y.E., Okhulkov A.V., “Structure and Hydrogen Bonding of Liquid Water at High Hydrostatic Pressures: Monte Carlo NPT-Ensemble Simulations up to 10 kbar”. J. Mol. Liq. 1999. 82(1–2): 57–72. 16. Saitta A.M., Datchi F., “Structure and Phase Diagram of High-Density Water: The Role of Interstitial Molecules”. Phys. Rev. E. 2003. 67 (Pt.1): 020201. 17. Rashchenko S.V., Kurnosov A., Dubrovinsky L., Litasov K.D., “Revised Calibration of the Sm:SrB4O7 Pressure Sensor Using the Sm-Doped Yttrium-Aluminum Garnet Primary Pressure Scale”. J. Appl. Phys. 2015. 117(14): 145902. 18. Wojdyr M., “Fityk: A General-Purpose Peak Fitting Program”. J. Appl. Crystallogr. 2010. 43(5): 1126–1128. 19. Frantz J.D., Dubessy J., Mysen B., “An Optical Cell for Raman Spectroscopic Studies of Supercritical Fluids and its Application to the Study of Water to 500℃ and 2000 Bar”. Chem. Geol. 1993. 106(1): 9–26. 20. Wagner W., Pruss A., “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use”. J. Phys. Chem. Ref. Data. 2002. 31(2): 10.1063/1.1461829. 21. Yang Y., Zheng H., “Pressure Determination by Raman Spectra of Water in Hydrothermal Diamond-Anvil Cell Experiments”. Appl. Spectrosc. 2009. 63(1): 120–123.