Инд. авторы: Vinnik D.A., Chernukha A.S., Gudkova S.A., Zhivulin V.E., Trofimov E.A., Tarasova A.Y., Zherebtsov D.A., Kalandija M., Trukhanov A.V., Trukhanov S.V., Senin A.V., Isaenko L.I., Perov N.S., Niewa R.
Заглавие: Morphology and magnetic properties of pressed barium hexaferrite BaFe12O19 materials
Библ. ссылка: Vinnik D.A., Chernukha A.S., Gudkova S.A., Zhivulin V.E., Trofimov E.A., Tarasova A.Y., Zherebtsov D.A., Kalandija M., Trukhanov A.V., Trukhanov S.V., Senin A.V., Isaenko L.I., Perov N.S., Niewa R. Morphology and magnetic properties of pressed barium hexaferrite BaFe12O19 materials // Journal of Magnetism and Magnetic Materials. - 2018. - Vol.459. - P.131-135. - ISSN 0304-8853.
Внешние системы: DOI: 10.1016/j.jmmm.2017.11.085; РИНЦ: 35480064; РИНЦ: 35480064; SCOPUS: 2-s2.0-85035113770; WoS: 000432615700026;
Реферат: eng: Barium hexaferrite tablets were compacted at pressures of 50–149 kN/cm2 and subsequently calcined at different temperatures up to 1350 °C for various durations. The compaction pressure has a non-monotonic influence on the calcined sample density and coercivity. The apparent density shows a maximum concomitant to a minimum in coercivity near a compaction pressure of 120 kN/cm2. In contrast the Curie temperature of 459 °C are not influenced by the compaction pressure. The optimized compaction pressure and subsequent calcination temperature for obtaining high-density single phase material is inferred to 108 kN/cm2 and 1350 °C, respectively. The resulting pellets show surfaces of two different sized crystallites in the 3–10 µm and 50–150 µm ranges and grains with cheese-like pores of 5–7 µm in the interior. The interior grain size increases with compaction pressure to up to 150–250 µm, while the pore size stays unaffected. © 2017 Elsevier B.V.
Ключевые слова: Ferrites; Magnetization; Pelletizing; Permanent magnets; Barium; Barium compounds; Calcination; Coercive force; Ferrite; Iron compounds; Magnetization; Permanent magnets; Pore size; Apparent density; Barium hexaferrites; Calcination temperature; Compaction pressure; Grain size; Sample density; Compaction; Single-phase materials; Pelletizing; Calcination;
Издано: 2018
Физ. характеристика: с.131-135
Цитирование: 1. Zhukova, E.S., Mikheykin, A.S., Torgashev, V.I., Bush, A.A., Yuzyuk, Y.I., Sashin, A.E., Prokhorov, A.S., Dressel, M., Gorshunov, B.P., Crucial influence of crystal site disorder on dynamical spectral response in artificial magnetoplumbites. Solid State Sci. 62 (2016), 13–21. 2. Sun, K., Li, Q., Guo, H., Yang, Y., Yu, Z., Xu, Z., Jiang, X., Lan, Z., Li, L., Magnetic property and stress study of barium hexaferrite thin films with different structures. J. Alloy. Compd. 663 (2016), 645–650. 3. Li, T., Li, Y., Wu, R., Zhou, H., Fang, X., Su, S., Xia, A., Jin, C., Liu, X., A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: Structural and magnetic properties. J. Magn. Magn. Mater. 393 (2015), 325–330. 4. Shams, M.H., Rozatian, A.S.H., Yousefi, M.H., Valíček, J., Šepelák, V., Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater. 399 (2016), 10–18. 5. Ustinov, A.B., Tatarenko, A.S., Srinivasan, G., Balbashov, A.M., Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices. J. Appl. Phys. 105 (2009), 105–108. 6. Vinnik, D.A., Ustinov, A.B., Zherebtsov, D.A., Vitko, V.V., Gudkova, S.A., Zakharchuk, I., Lähderanta, E., Niewa, R., Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals. Ceram. Int. 41 (2015), 12728–127337. 7. Liu, J., Zeng, Y., Su, Z., Geiler, M., Chen, Y., Harris, V.G., Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators. J. Electronic Mater. 45 (2016), 5069–5073. 8. Afghahi, S.S.S., Jafarian, M., Atassi, Y., Novel approach for designing a thin and broadband microwave absorber in Ku band based on substituted M-hexaferrites. J. Magn. Magn. Mater. 419 (2016), 62–67. 9. Lou, H., Wang, J., Xu, B., Wang, G., Hou, Y., Gao, H., Ye, W., Effects of Mg or Sr doping on the intrinsic characteristics and absorption properties of micro-nano BaFe12O19 hollow multiphase ceramic microspheres. J. Magn. Magn. Mater. 374 (2015), 530–538. 10. Fu, L., Liu, X., Zhang, Y., Dravid, V.P., Mirkin, C.A., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3 (2003), 757–760. 11. Müller, R., Hergt, R., Dutz, S., Zeisberger, M., Gawalek, W., Nanocrystalline iron oxide and ba ferrite particles in the superparamagnetism-ferromagnetism transition range with ferrofluid applications. J. Phys.: Condens. Matter. 18 (2006), S2527–S2542. 12. Li, Y., Xia, A., Jin, C., Synthesis, structure and magnetic properties of hexagonal BaFe12O19 ferrite obtained via a hydrothermal method. J. Mater. Sci. 27 (2016), 10864–10868. 13. Auwal, I.A., Baykal, A., Güner, S., Sözeri, H., Magneto-optical properties of SrBixLaxFe12–2 xO19 (0.0 ≤ x ≤ 0.5) hexaferrites by sol-gel auto-combustion technique. Ceram. Int. 43 (2017), 1298–1303. 14. Afghahi, S.S.S., Jafarian, M., Atassi, Y., Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19 (X = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magn. Magn. Mater. 406 (2016), 184–191. 15. Joshi, R., Singh, C., Kaur, D., Zaki, H., Bindra Narang, S., Jotania, R., Mishra, S.R., Singh, J., Dhruv, P., Ghimire, M., Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. J. Alloy. Compd. 695 (2017), 909–914. 16. Shafie, M.S.E., Hashim, M., Ismail, I., Kanagesan, S., Fadzidah, M.I., Idza, I.R., Hajalilou, A., Sabbaghizadeh, R., Magnetic M-H loops family characteristics in the microstructure evolution of BaFe12O19. J. Mater. Sci. Mater. Electron. 25 (2014), 3787–3794. 17. Trukhanov, S.V., Trukhanov, A.V., Kostishin, V.G., Panina, L.V., Turchenko, V.A., Kazakevich, I.S., Trukhanova, E.L., Natarov, V.O., Balagurov, A.M., Thermal evolution of exange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Matter. 426 (2017), 554–562. 18. Wu, C., Yu, Z., Yang, Y., Sun, K., Nie, J., Liu, Y., Jiang, X., Lan, Z., Computational and experimental study on the cation distribution of La-Cu substituted barium hexaferrites. J. Alloy. Compd. 664 (2016), 406–410. 19. Fisher, J.G., Sun, H., Kook, Y.-G., Kim, J.-S., Le, P.G., Growth of single crystals of BaFe12O19 by solid state crystal growth. J. Magn. Magn. Matter. 416 (2016), 384–390. 20. Gambino, R.J., Leonhard, F., Growth of barium ferrite single crystals. J. Am. Ceram. Soc. 44 (1961), 221–224. 21. Balbashov, A.M., Egorov, S.K., Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating. J. Crystal Growth 52 (1981), 498–504. 22. Pullar, R.C., Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57 (2012), 1191–1334. 23. Benito, G., Morales, M.P., Requena, J., Raposo, V., Vazquez, M., Moya, J.S., Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method. J. Magn. Magn. Mater. 234 (2001), 65–72. 24. Stäblein, H., Hard ferrites and plastoferrites. Wohlfarth, E.P., (eds.) Handbook of Magnetic Materials, vol. 3, 1982, North-Holland. 25. Matutes-Aquino, J., Castanon, S.D., Garcia, M.M., Sanchez, S.A.P., Synthesis by coprecipitation and study of barium hexaferrite powders. Scr. Mater. 42 (2000), 295–299. 26. Ataie, A., Zojaji, S.E., Synthesis of barium hexaferrite nano-particles via mechano-combustion route. J. Alloy. Compd. 431 (2007), 331–336. 27. Wronski, C.R.V., The size dependence of the melting point of small particles of tin. Brit. J. Appl. Phys. 18 (1967), 1731–1737. 28. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., Yurkov, G.Yu., Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74 (2005), 489–520. 29. Sozeri, H., Effect of pelletization on magnetic properties of BaFe12O19. J. Alloy. Compd. 486 (2009), 809–814. 30. Sözeri, H., Mehmedi, Z., Kavas, H., Baykal, A., Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions. Ceram. Int. 41 (2015), 9602–9609. 31. Townes, W.D., Fang, J.H., Perrotta, A.J., The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19. Z. Kristallogr. 125 (1967), 437–449. 32. Atuchin, V.V., Vinnik, D.A., Gavrilova, T.A., Gudkova, S.A., Isaenko, L.I., Jiang, X., Pokrovsky, L.D., Prosvirin, I.P., Mashkovtseva, L.S., Lin, Z., Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J. Phys. Chem. C 120 (2016), 5114–5123.