Инд. авторы: Agashev A.M., Pokhilenko L.N., Pokhilenko N.P., Shchukina E.V.
Заглавие: Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: Section of ancient oceanic crust sampled
Библ. ссылка: Agashev A.M., Pokhilenko L.N., Pokhilenko N.P., Shchukina E.V. Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: Section of ancient oceanic crust sampled // Lithos. - 2018. - Vol.314-315. - P.187-200. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2018.05.027; РИНЦ: 35720608; SCOPUS: 2-s2.0-85048717553; WoS: 000441854400013;
Реферат: eng: A suite of seventeen unique, large, and fresh eclogite xenoliths from the Udachnaya pipe have been studied for their whole-rock and mineral major- and trace-element compositions. Based on their major-element compositions, the Udachnaya eclogites can be subdivided in two groups: high magnesian (Mg# 68.8–81.9) and low magnesian (Mg# 56.8–59). The two eclogite groups are clearly different in the style of correlation between major elements. Positive correlations of FeO and CaO with MgO are observed in the low-magnesian group, whereas these correlations are negative in the high-magnesian group. In terms of trace element composition, the Udachnaya eclogites are enriched over Primitive Mantle, but comparable to mid-ocean-ridge basalt composition, except for significant enrichment in large-ion lithophile elements (LILE; Rb, Ba, K, Sr). Most of the samples show a positive Eu anomaly, irrespective of group. Reconstructed whole-rock composition from clinopyroxene and garnet modal abundances contains much less incompatible elements (LILE, light rare earth elements, high field strength elements) than measured composition. Approximately 60 to 100% of the middle rare earth elements, Zr, and Hf, and nearly 100% of the heavy rare earth elements, Co, V, and Sc of the whole-rock budget are concentrated in Gar and Cpx. Variations in major element compositions cover a full section of the modern and Archaean oceanic crust, from troctolite, through gabbroic rocks, to basalts. The low-Mg# eclogites could have formed from upper oceanic crust protoliths, being a mixture of basalts and gabbro, whereas the high-Mg# eclogites are originated from gabbro-troctolite section of the lower oceanic crust. Concordant variations of Eu anomaly with the Lu/Sr ratio and the V and Ni contents in the eclogite compositions are in agreement with the fractionation of plagioclase, clinopyroxene, and olivine in their low-pressure precursor rocks. Negative correlations of SiO2 and MgO, and a low Nd/YbNMORB ratio, in the low-Mg# eclogites are in agreement with partial melt loss, but the presence of accessory quartz limits the degree of melting to 13%. Major and trace element compositions suggest that the high-Mg# eclogites, and, consequently, the lower oceanic crust, could not have experienced significant melt loss, and subduction in the Archaean may have been essentially dry, compared to the present day. © 2018 Elsevier B.V.
Ключевые слова: Geochemistry; Lithospheric mantle; Oceanic crust; Xenolith; Lile; Subduction; Eclogite;
Издано: 2018
Физ. характеристика: с.187-200
Цитирование: 1. Agashev, A.M., Watanabe, T., Kuligin, S.S., Pokhilenko, N.P., Orihashi, Y., Rb–Sr and Sm–Nd isotopes in garnet-pyroxenite xenoliths from Siberian kimberlites: an insight into lithospheric mantle. J. Mineral. Petrol. Sci. 96 (2001), 7–18. 2. Agashev, A.M., Pokhilenko, N.P., Cherepanova, Yu.V., Golovin, A.V., Geochemical evolution of rocks at the base of the lithospheric mantle: evidence from study of xenoliths of deformed peridotites from kimberlite of the Udachnaya pipe. Dokl. Earth Sci. 432 (2010), 746–749. 3. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Yu, Sharygin, I.S., Metasomatism in the lithospheric mantle roots: constraints from WR and minerals chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161 (2013), 201–215. 4. Arevalo, R., McDonough, W.F., Chemical variations and regional diversity observed in MORB. Chem. Geol. 271 (2010), 70–85. 5. Aulbach, S., Jacob, D.E., Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262 (2016), 586–605. 6. Aulbach, S., Viljoen, K.S., Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet. Sci. Lett. 431 (2015), 274–286. 7. Azuma, S., Yamamoto, S., Ichikawa, H., Maruyama, S., Why primordial continents were recycled to the deep: role of subduction erosion. Geosci. Front. 8 (2017), 337–346. 8. Barry, P.H., Hilton, D.R., Day, J.M.D., Pernet-Fisher, J.F., Howarth, G.H., Agashev, A.M., Pokhilenko, N.P., Pokhilenko, L.N., Taylor, L.A., Volatile flux modification of cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos 216–217 (2015), 73–80. 9. Barth, M.G., Rudnick, R.L., Horn, I., McDonough, W.F., Spicuzza, M.J., Valley, J.W., Haggerty, S.E., Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and Archean crust formation. Geochim. Cosmochim. Acta 65:9 (2001), 1499–1527. 10. Barth, M.G., Foley, S.F., Horn, I., Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res. 113 (2002), 323–340. 11. Barth, M.G., Rudnick, R.L., Horn, I., McDonough, W.F., Spicuzza, M.J., Valley, J.W., Haggerty, S.E., Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim. Cosmochim. Acta 66 (2002), 4325–4345. 12. Coleman, R.G., Lee, D.E., Beatty, L.B., Brannock, W.W., Eclogites and eclogites: their differences and similarities. Geol. Soc. Am. Bull. 76 (1965), 483–508. 13. Coogan, L.A., The lower oceanic crust. Turekian, K., Holland, H.D., (eds.) Treatise on Geochemistry, 2014, Elsevier, 497–541. 14. Dawson, J.B., Contrasting types of upper mantle metasomatism?. Kimberlites II: The Mantle and Crust-Mantle Relationship Proceeding of the 3rd International Kimberlite Conference, 1984, Elsevier, 289–295. 15. Domanik, K.J., Holloway, J.R., The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochim. Cosmochim. Acta 60 (1996), 4133–4150. 16. Ellis, D.J., Green, D.H., An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71 (1979), 13–22. 17. Gillis, K.M., Snow, J.E., Klaus, A., Abe, N., et al. Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505 (2013), 204–207. 18. Godard, M., Awaji, S., Hansen, H., Hellebrand, E., Brunelli, D., Johnson, K., Yamasaki, T., Maeda, J., Abratis, M., Christie, D., Kato, Y., Mariet, C., Rosner, M., Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic Ridge). Earth Planet. Sci. Lett. 279 (2009), 110–122. 19. Gréau, Y., Huang, J.X., Griffin, W.L., Renac, C., Alard, O., O'Reilly, S.Y., Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim. Cosmochim. Acta 75 (2011), 6927–6954. 20. Heaman, L.M., Creaser, R.A., Cookenboo, H.O., Chacko, T., Multi-stage modifcation of the Northern slave mantle lithosphere: evidence from ziron-and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite. Canada. J. Pet. 47 (2006), 821–858. 21. Horn, L., Hinton, R.W., Jackson, S.E., Longerich, H.P., Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): a comparison with secondary ion mass spectrometry (SIMS). Geostand. Newslett. 21 (1997), 191–203. 22. Ionov, D.A., Doucet, L.S., Ashchepkov, I.V., Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51 (2010), 2177–2210. 23. Ireland, T.R., Rudnick, R.L., Spetsius, Z., Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet. Sci. Lett. 128 (1994), 199–213. 24. Jacob, D.E., Nature and origin of eclogite xenoliths from kimberlites. Lithos 77 (2004), 295–316. 25. Jacob, D.E., Foley, S.F., Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48 (1999), 317–336. 26. Jacob, D.E., Jagoutz, E., Lowry, D., Mattey, D.M., Kudrjavtseva, G., Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim. Cosmochim. Acta 58 (1994), 5191–5207. 27. Kogiso, T., Tatsumi, Y., Nakano, S., Trace element transport during dehydration processes in thesubducted oceanic crust: 1.Experiments and implications for the origin of oceanisland basalts. Earth Planet. Sci. Lett. 148 (1997), 193–205. 28. Lavrent'ev, Yu.G., Korolyuk, V.N., Usova, L.V., Nigmatulina, E.N., Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 56 (2015), 1428–1436. 29. MacGregor, I.D., Carter, J.L., The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys. Earth Planet. Inter. 3 (1970), 391–397. 30. McDonough, W.F., Sun, S., The composition of the earth. Chem. Geol. 120 (1995), 223–253. 31. Misra, K.C., Anand, M., Taylor, L.A., Sobolev, N.V., Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral. Petrol. 146 (2004), 696–714. 32. Nikolaeva, I., Palesskii, S., Koz'menko, O., Anoshin, G., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 46 (2008), 1016–1022. 33. Pawley, A.R., The pressure and temperature stability limits of lawsonite: implications for H2O recycling in subduction zones. Contrib. Mineral. Petrol. 118 (1994), 99–108. 34. Pearson, D.G., Snyder, G.A., Shirey, S.B., Taylor, L.A., Carlson, R.W., Sobolev, N.V., Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374 (1995), 711–713. 35. Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., Vincze, L., Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507 (2014), 221–224. 36. Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J.W., Bodnar, R.J., Spetsius, Z.V., Taylor, L.A., Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contrib. Mineral. Petrol., 167, 2014, 981. 37. Pernet-Fisher, J.F., Howarth, G.H., Pearson, D.G., Woodland, S., Barry, P.H., Pokhilenko, N.P., Pokhilenko, L.N., Agashev, A.M., Taylor, L.A., Plume impingement on the Siberian SCLM: evidence from Re-Os isotope systematic. Lithos 218:219 (2015), 141–154. 38. Polat, A., Frei, R., Appel, P.W.U., Dilek, Y., Fryer, B., Ordóñez-Calderón, J.C., Yang, Z., The origin and compositions of Mesoarchean oceanic crust: evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland. Lithos 100 (2008), 293–321. 39. Rapp, R.P., Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: implication for continental growth and crust-mantle recycling. J. Petrol. 36 (1995), 891–931. 40. Riches, A.J.V., Liu, Y., Day, J.M.D., Spetsius, Z.V., Taylor, L.A., Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120 (2010), 368–378. 41. Ringwood, A., Green, D., An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3 (1966), 383–427. 42. Rudnick, R., Making continental crust. Nature 378 (1995), 571–577. 43. Schmickler, B., Jacob, D.E., Foley, S.F., Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75 (2004), 173–207. 44. Shatsky, V., Ragozin, A., Zedgenizov, D., Mityukhin, S., Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe. Lithos 105 (2008), 289–300. 45. Smart, K.A., Heaman, L.M., Chacko, T., Simonetti, A., Kopylova, M., Mah, D., Daniels, D., The origin of high-MgO diamond eclogites from the Jericho Kimberlite. Canada. Earth Planet. Sci. Lett. 284 (2009), 527–537. 46. Smyth, J.R., Caporuscio, F.A., McCormick, T., Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet. Sci. Lett. 93 (1989), 133–141. 47. Snyder, G.A., Taylor, L.A., Jerde, E.A., Clayton, R.N., Mayeda, T.K., Deines, P., Rossman, G.R., Sobolev, N.V., Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am. Mineral. 80 (1995), 799–809. 48. Snyder, G.A., Taylor, L.A., Crozaz, G., Halliday, A.N., Beard, B.L., Sobolev, V.N., Sobolev, N.V., The origins of Yakutian eclogite xenoliths. J. Petrol. 38 (1997), 85–113. 49. Sobolev, N.V., Snyder, G.A., Taylor, L.A., Keller, R.A., Yefimova, E.S., Sobolev, V.N., Shimizu, N., Extreme chemical diversity in the mantle during eclogite diamond formation: evidence from 35 garnet and 5 pyroxene inclusions in a single diamond. Int. Geol. Rev. 40 (1998), 567–578. 50. Taylor, L.A., Neal, C.R., Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: mineralogy, petrography, and whole-rock chemistry. J. Geol. 97 (1989), 551–567. 51. Thomassot, E., Cartigny, P., Harris, J.W., Lorand, J.P., Rollion-Bard, C., Chaussidon, M., Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 282 (2009), 79–90. 52. Tychkov, N.S., Agashev, A.M., Malygina, E.V., Nikolenko, E.I., Pokhilenko, N.P., Thermal perturbations in the lithospheric mantle as evidenced from P-T equilibrium conditions of xenoliths from the Udachnaya kimberlite pipe. Dokl. Earth Sci. 454:1 (2014), 84–88. 53. Yaxley, G.M., Green, D.H., Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78 (1998), 243–255. 54. Yudin, D.S., Tomilenko, A.A., Alifirova, T.A., Travin, A.V., Murzintsev, N.G., Pokhilenko, N.P., Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe). Dokl. Earth Sci. 469 (2016), 728–731. 55. Ziaja, K., Foley, S.F., White, R.W., Buhre, S., Metamorphism and melting of picritic crust in the early Earth. Lithos 189 (2014), 173–184.