Инд. авторы: Khokhryakov A.F., Palyanov Y.N., Borzdov Y.M., Kozhukhov A.S., Sheglov D.V.
Заглавие: Influence of a silicon impurity on growth of diamond crystals in the Mg-C system
Библ. ссылка: Khokhryakov A.F., Palyanov Y.N., Borzdov Y.M., Kozhukhov A.S., Sheglov D.V. Influence of a silicon impurity on growth of diamond crystals in the Mg-C system // Diamond and Related Materials. - 2018. - Vol.87. - P.27-34. - ISSN 0925-9635. - EISSN 1879-0062.
Внешние системы: DOI: 10.1016/j.diamond.2018.05.006; РИНЦ: 35505868; SCOPUS: 2-s2.0-85046992959; WoS: 000445294200004;
Реферат: eng: This article reports a study of the morphology of diamond crystals grown at 7.0 GPa and 1800 °C in the Mg-C system with the addition of silicon in an amount of 0.5 wt%. Step patterns on {111} and {100} faces were studied in a wide range of magnifications using optical microscopy (DIC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Morphological studies revealed that a reduction in the growth rate and a change in the morphological significance of the {100} and {111} faces were associated with adsorption of a mobile impurity (silicon) leading to poisoning of kinks and (or) steps. This leads to roughing of the faces and formation of macrosteps as well as 2D and 3D nucleation islands. At a silicon concentration of 1.0 wt% or more, immobile impurity particles are apparently formed on macrostep terraces, and growth inhibition occurs according to the Cabrera-Vermilyea model. © 2018 Elsevier B.V.
Ключевые слова: Surface microscopy; Silicon concentration; Morphological study; Impurity particles; Impurity adsorption; High pressure high temperature; Growth inhibition; 2D and 3D nucleations; Synthetic diamonds; Silicon; Morphology; Magnesium compounds; High pressure effects in solids; Atomic force microscopy; Synthetic diamond; Surface microscopy; Morphology; Impurity adsorption; High pressure high temperature (HTHP); Scanning electron microscopy; Crystal impurities;
Издано: 2018
Физ. характеристика: с.27-34
Цитирование: 1. Palyanov, Y.N., Borzdov, Y.M., Kupriyanov, I.N., Khokhryakov, A.F., Nechaev, D.V., Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 17 (2015), 4928–4936, 10.1039/c5ce00897b. 2. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Bataleva, Y.V., High-pressure synthesis and characterization of diamond from an Mg-Si-C system. CrystEngComm, 17, 2015, 7323−7331, 10.1039/c5ce01265a. 3. Palyanov, Y., Kupriyanov, I., Khokhryakov, A., Ralchenko, V., Crystal growth of diamond. Nishinaga, T., Rudolph, P., (eds.) Handbook of Crystal Growth, Volume 2a, 2015, Elsevier, Amsterdam, Holland, 671–713, 10.1016/B978-0-444-63303-3.00017-1. 4. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Khokhryakov, A.F., Surovtsev, N.V., High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 16 (2016), 3510–3518, 10.1021/acs.cgd.6b00481. 5. Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., Borzdov, Y.M., High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm, 19, 2017, 4459−4475, 10.1039/c7ce01083d. 6. Palyanov, Y., Kupriyanov, I., Borzdov, Y., Nechaev, D., Bataleva, Y., HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals, 7, 2017, 119, 10.3390/cryst705011. 7. Müller, T., Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., Sternschulte, H., Steinmüller-Nethl, D., Becher, C., Atatüre, M., Optical signatures of silicon-vacancy spins in diamond. Nat. Commun., 5, 2014, 3328, 10.1038/ncomms4328. 8. Prawer, S., Aharonovich, I., (eds.) Quantum Information Processing with Diamond, ourth ed., 2014, Woodhead Publishing. 9. Khokhryakov, A.F., Palyanov, Yu.N., Borzdov, Yu.M., Kozhukhov, A.S., Shcheglov, D.V., Step patterns on {100} faces of diamond crystals as-grown in Mg-based systems. Cryst. Growth Des. 18 (2018), 152–158, 10.1021/acs.cgd.7b01025. 10. Khokhryakov, A.F., Nechaev, D.V., Palyanov, Y.N., Unusual growth macrolayers on {100} faces of diamond crystals from magnesium-based systems. J. Cryst. Growth, 455, 2016, 76−82, 10.1016/j.jcrysgro.2016.10.004. 11. Khokhryakov, A.F., Nechaev, D.V., Palyanov, Y.N., Kuper, K.E., The dislocation structure of diamond crystals grown on seeds in the Mg-C system. Diam. Relat. Mater., 70, 2016, 1−6, 10.1016/j.diamond.2016.09.012. 12. Plomp, M., Nijdam, A.J., van Enckevort, W.J.P., The structure of coarse crystal surfaces: the (001) face of K2Cr2O7 crystals grown from aqueous solution as an example. J. Cryst. Growth 193 (1998), 389–401, 10.1016/S0022-0248(98)00531-4. 13. Kurnosikov, O., Pham Van, L., Cousty, J., High-temperature transformation of vicinal (0001) Al2O3-α surfaces: an AFM study. Surf. Interface Anal. 29 (2000), 608–613, 10.1002/1096-9918(200009)29:93.3.CO;2-2. 14. Thomas, T.N., Land, T.A., Casey, W.H., De Yoreo, J.J., Emergence of supersteps on KH2PO4 crystal surfaces. Phys. Rev. Lett., 92, 2004, 216103, 10.1103/PhysRevLett.92.216103. 15. Chernov, A.A., Modem crystallography III. Crystal Growth, 1984, Springer-Verlag, Berlin DollarSense https://doi.org/10.1007/978-3-642-81835-6. 16. Sangwal, K., Additives and Crystallization Processes: From Fundamentals to Applications. 2007, John Wiley & Sons Ltd., England. 17. Bliznakov, G.M., Über die Wachstumsformen der Kristalle und den Einfluß der Adsorption auf die lineare Kristallisations geschwindigkeit. Bull. Acad. Sci. Bulg. Ser. Phys. 4 (1954), 135–152. 18. Bliznakov, G.M., Die Kristalltracht und die Adsorption frem der Beimischungen. Fortschr. Min. 36 (1958), 149–191. 19. Kubota, N., Mullin, J.W., A kinetic model for crystal growth from aqueous solution in the presence of impurity. J. Cryst. Growth 152 (1995), 203–208. 20. Kubota, N., Yokota, M., Mullin, J.W., The combined influence of supersaturation and impurity concentration on crystal growth. J. Cryst. Growth 212 (2000), 480–488, 10.1016/S0022-0248(00)00339-0. 21. Cabrera, N., Vermilyea, D.A., The growth of crystals from solution. Doremus, R.H., Roberts, B.W., Turnbull, D., (eds.) Growth and Perfection of Crystals, 1958, John Wiley, New York, 393–410. 22. Lutsko, J.F., Van Driessche, A.E.S., Durán-Olivencia, M.A., Maes, D., Sleutel, M., Step crowding effects dampen the stochasticity of crystal growth kinetics. Phys. Rev. Lett., 116, 2016, 015501, 10.1103/PhysRevLett.116.015501. 23. Sleutel, M., Lutsko, J., Van Driessche, A.E.S., Mineral growth beyond the limits of impurity poisoning. Cryst. Growth Des. 18 (2018), 171–178, 10.1021/acs.cgd.7b01057.