Инд. авторы: Caracciolo V., Cappella F., Cerulli R., Marco A.D., Laubenstein M., Nagorny S.S., Safonova O.E., Shlegel V.N.
Заглавие: Limits and performances of a BaWO4 single crystal
Библ. ссылка: Caracciolo V., Cappella F., Cerulli R., Marco A.D., Laubenstein M., Nagorny S.S., Safonova O.E., Shlegel V.N. Limits and performances of a BaWO4 single crystal // Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 2018. - Vol.901. - P.150-155. - ISSN 0168-9002.
Внешние системы: DOI: 10.1016/j.nima.2018.06.005; РИНЦ: 35717611; SCOPUS: 2-s2.0-85048583597; WoS: 000438614500021;
Реферат: eng: A Barium Tungstate single crystal (BaWO4) was produced using the low thermal gradient Czochralski technique. In this paper the results concerning its light emission and radioactive contaminants are presented. The aim of this work is to investigate the possibility to realize BaWO4 crystals with suitably features to study the double beta decay of 130Ba and 132Ba isotopes by the “source=detector” approach. The results show the limitations of a BaWO4 crystal as a scintillator and give some idea on how to overcome them in order to take profit from the potentiality of this single crystal. © 2018
Ключевые слова: Tungsten compounds; Rare events; Radioactive contaminants; Low-thermal gradients; Double beta decay; Czochralski technique; BaWO4; Single crystals; Radioactivity; Phosphors; Barium compounds; Scintillator; Rare events; Double beta decay; BaWO4; Scintillation counters;
Издано: 2018
Физ. характеристика: с.150-155
Цитирование: 1. Goeppert-Mayer, M., Phys. Rev., 48, 1935, 512. 2. Barabash, A.S., Nuclear Phys. A, 52, 2015, 935. 3. Furry, W.H., Phys. Rev., 56, 1939, 1184. 4. Mohapatra, R.N., Pal, P.B., Massive Neutrinos in Physics and Astrophhysics. 2004, Word Scientific Publishing 981-238-070-1. 5. Hirsch, M., et al. Z. Phys. A, 347, 1994, 151. 6. Deppisch, F.F., Hirsch, M., Päs, H., J. Phys. G., 39, 2012, 124007. 7. Bilenky, S.M., Giunti, C., Int. J. Mod. Phys. A, 30, 2015, 1530001. 8. Tretyak, V.I., Zdesenko, Y.G., At. Data Nucl. Data Tables, 61, 1995, 43. 9. Tretyak, V.I., Zdesenko, Y.G., At. Data Nucl. Data Tables, 80, 2002, 83. 10. Wang, M., et al. Chinese Phys. C, 36, 2012, 1603. 11. Meshik, A.P., et al. Phys. Rev. C, 64, 2001, 035205. 12. Pujol, M., et al. Geochim. Cosmochim. Acta, 73, 2009, 6834. 13. Cerulli, R., et al. Nucl. Instrum. Methods A 525 (2004), 535–543. 14. Belli, P., et al. Nuclear Phys. A 930 (2014), 195–208. 15. http://scintillator.lbl.gov/. 16. Belli, P., et al. Nucl. Instrum. Methods Phys. Res. Sect. A, 615, 2010, 301. 17. Barabash, A.S., et al. Nucl. Instrum. Methods A, 833, 2016, 77. 18. R. Bernabei, et al., Proc. 16th Lom. Conf. Elem. Part. Phy. 2015, p. 300. 19. Boiko, R.S., et al. Eur. Phys. J. Web Conf., 65, 2014, 04001. 20. Bernabei, R., et al. AIP Conf. Proc., 1549, 2013, 189. 21. Danevich, F.A., et al. AIP Conf. Proc., 1549, 2013, 201. 22. Polischuk, P.G., et al. AIP Conf. Proc., 1549, 2013, 124. 23. Cappella, F., et al. Eur. Phys. J. C, 73, 2013, 276. 24. Bernabei, R., et al. Il Nuovo Cimento A, 110, 1997, 189. 25. Belli, P., et al. Nuclear Phys. B, 563, 1999, 97. 26. Belli, P., et al. Astropart. Phys., 10, 1999, 115. 27. Bernabei, R., et al. Nuclear Phys. A, 705, 2002, 29. 28. Bernabei, R., et al. Phys. Lett. B, 527, 2002, 182. 29. Bernabei, R., et al. Phys. Lett. B, 546, 2002, 23. 30. Belli, P., et al. Nucl. Instrum. Methods A, 498, 2003, 352. 31. Bernabei, R., et al. Nucl. Instrum. Methods A 555 (2005), 270–281. 32. Bernabei, R., et al. Eur. Phys. J. A 27 (2006), 35–41. 33. Belli, P., et al. Phys. Rev. C, 76, 2007, 064603. 34. Belli, P., et al. Eur. Phys. J. A 36 (2008), 167–170. 35. Belli, P., et al. Nuclear Phys. A 826 (2009), 256–273. 36. Belli, P., et al. Nuclear Phys. A 824 (2009), 101–114. 37. Belli, P., et al. Eur. Phys. J. A 42 (2009), 171–177. 38. Belli, P., et al. Nuclear Phys. A 846 (2010), 143–156. 39. Belli, P., et al. J. Phys. G, 38, 2011, 015103. 40. Belli, P., et al. Nuclear Phys. A 859 (2011), 126–139. 41. Belli, P., et al. Eur. Phys. J. A, 47, 2011, 91. 42. Belli, P., et al. J. Phys. G, 38, 2011, 115107. 43. Belli, P., et al. Phys. Rev. C, 85, 2012, 044610. 44. Belli, P., et al. Nucl. Instrum. Methods A 670 (2012), 10–17. 45. Belli, P., et al. J. Phys. Conf. Ser., 375, 2012, 042024. 46. Belli, P., et al. Eur. Phys. J. A, 49, 2013, 24. 47. Poda, D.V., et al. Radiat. Meas. 56 (2013), 66–69. 48. Belli, P., et al. Phys. Rev. C, 87, 2013, 034607. 49. Bernabei, R., et al. AIP Conf. Proc. 1549 (2013), 189–196. 50. Belli, P., et al. Eur. Phys. J. A, 50, 2014, 134. 51. Das, Soumik, et al. Nucl. Instrum. Methods A 797 (2015), 130–137. 52. Danevich, F.A., et al. J. Phys. Conf. Ser., 718, 2016, 062009. 53. Belli, P., et al. Phys. Rev. C, 93, 2016, 045502. 54. Belli, P., et al. AIP Conf. Proc., 1894, 2017, 020005. 55. Belli, P., et al. Eur. Phys. J. A, 53, 2017, 172. 56. Polischuk, O.G., et al. AIP Conf. Proc., 1894, 2017, 020018. 57. Danevich, F.A., et al. Phys. Rev. C, 67, 2003, 014310. 58. Belli, P., et al. Nuclear Phys. A 789 (2007), 15–29. 59. Belli, P., et al. Nucl. Instrum. Methods A 572 (2007), 734–738. 60. Zdesenko, Yu.G., et al. Nucl. Instrum Methods A 538 (2005), 657–667. 61. Derenzo, S., et al. Nucl. Instrum. Methods A, 652, 2011, 247. 62. Eagleman, Y., et al. IEEE Trans. Nucl. Sci., 59, 2012, 479. 63. Gundiah, G., et al. Nucl. Instrum. Methods A, 652, 2011, 234. 64. Selling, J., et al. J. Appl. Phys., 101, 2007, 034901. 65. Selling, J., et al. J. Appl. Phys., 102, 2007, 074915. 66. Selling, J., et al. IEEE Trans. Nucl. Sci., 55, 2008, 1183. 67. Gundiah, G., et al. J. Lumin., 138, 2013, 143. 68. Yan, Z., et al. J. Cryst. Growth, 435, 2016, 42. 69. Bourret-Courchesne, E.D., et al. Nucl. Instrum. Methods A, 613, 2010, 95. 70. Bizarri, G., et al. IEEE Trans. Nucl. Sci., 58, 2011, 3403. 71. Shirwadkar, U., et al. IEEE Trans. Nucl. Sci., 60, 2013, 1011. 72. Yan, Z., et al. Nucl. Instrum. Methods A, 698, 2013, 7. 73. Yan, Z., et al. Nucl. Instrum. Methods Phys. Res. A, 735, 2014, 83. 74. Bourret-Courchesne, E.D., et al. J. Cryst. Growth, 352, 2012, 78. 75. Laval, M., et al. Nucl. Instrum. Methods, 206, 1983, 169. 76. Holl, I., et al. IEEE Trans. Nucl. Sci., 35, 1988, 105. 77. Melcher, C.L., et al. IEEE Trans. Nucl. Sci., 36, 1989, 1188. 78. van Eijk, C., et al. Experimental and theoretical studies of cross luminescence. Heavy Scintillators for Scientific and Industrial Applications, 2000, Editions Frontieres, Crystal 2-86332-128-5. 79. Derenzo, S.E., et al. IEEE Trans. Nucl. Sci., 47, 2000, 860. 80. Sakai, E., IEEE Trans. Nucl. Sci., 34, 1987, 418. 81. Visser, R., et al. IEEE Trans. Nucl. Sci., 38, 1991, 178. 82. Gektin, A.V., et al. IEEE Trans. Nucl. Sci., 56, 2009, 1002. 83. Gundiah, G., et al. IEEE Trans. Nucl. Sci., 57, 2010, 1702. 84. Van Loef, E.V., et al. IEEE Trans. Nucl. Sci., 54, 2007, 741. 85. Borade, R., et al. Nucl. Instrum. Methods A, 652, 2011, 260. 86. Bourret-Courchesne, E.D., et al. Nucl. Instrum. Methods A, 612, 2009, 138. 87. Alekhin, M.S., et al. J. Lumin., 145, 2014, 723. 88. Gascon, M., et al. J. Lumin., 156, 2014, 63. 89. Rowe, Emmanuel, et al. IEEE Trans. Nucl. Sci., 60, 2013, 1057. 90. Stand, L., et al. J. Lumin., 169, 2016, 301. 91. Pavlyuk, A.A., et al. Asia Pac. Soc. Adv. Mater., 1992, 26–29 Inst. Mat. Res., 1993, 164. 92. Borovlev, Yu.A., et al. J. Cryst. Growth, 229, 2001, 305. 93. Galashov, E.N., et al. Funct. Mater., 17, 2010, 504. 94. Grigoriev, D.N., et al. JINST, 9, 2014, C09004. 95. Barabash, A.S., et al. JINST, 6, 2011, P08011. 96. Barabash, A.S., et al. Eur. Phys. J. C, 74(10), 2014, 3133. 97. Musikhin, A.E., et al. J. Alloys Compd. 655 (2016), 165–171. 98. Belli, P., et al. Nucl. Instrum. Methods Phys. Res. A 626- 627 (2011), 31–38. 99. Ivanov, I.M., et al. Inorg. Mater. 44:12 (2008), 1330–1333. 100. Ge, W.W., et al. J. Appl. Phys., 98, 2005, 013542. 101. Laubenstein, M., Internat. J. Modern Phys. A, 32(30), 2017, 1743002. 102. http://www.lngs.infn.it. 103. Agostinelli, S., et al. Nucl. Instrum. Methods A, 506, 2003, 250. 104. Allison, J., et al. IEEE Trans. Nucl. Sci., 53, 2006, 270. 105. Bernabei, R., J. Phys. G: Nucl. Part. Phys., 38, 2011, 115107. 106. J.R. Lakowicz, Principles of Fluorescence Spectroscopy. ISBN 978-0-387-46312-4. 107. Tyagi, M., et al. J. Lumin. 128 (2008), 1528–1532. 108. Nikl, M., et al. J. Lumin. 87–89 (2000), 7–1136. 109. Kamenskikh, I.A., et al. Funct. Mater., 9, 2002, 2. 110. Kolobanov, V.N., et al. Nucl. Instrum. Methods A, 486, 2002, 496. 111. Annenkov, A.A., et al. Nucl. Instrum. Methods A, 490, 2002, 30. 112. Treadaway, M.J., Powell, R.C., et al. J. Chem. Phys., 61, 1974, 4003. 113. Blistanov, A.A., et al. Phys. Prop. Crys., Vol. 50. 2005, 284. 114. Grasser, R., et al. J. Lumin., 27, 1982, 263. 115. Grasser, R., et al. Phys. Status Solidi B, 69, 1975, 359. 116. Nikl, M., et al. Phys. Status Solidi B, 245, 2008, 1701. 117. Laasner, R., et al. J. Phys. Condens. Matter, 27, 2015, 385501.