Цитирование: | 1. Goeppert-Mayer, M., Phys. Rev., 48, 1935, 512.
2. Barabash, A.S., Nuclear Phys. A, 52, 2015, 935.
3. Furry, W.H., Phys. Rev., 56, 1939, 1184.
4. Mohapatra, R.N., Pal, P.B., Massive Neutrinos in Physics and Astrophhysics. 2004, Word Scientific Publishing 981-238-070-1.
5. Hirsch, M., et al. Z. Phys. A, 347, 1994, 151.
6. Deppisch, F.F., Hirsch, M., Päs, H., J. Phys. G., 39, 2012, 124007.
7. Bilenky, S.M., Giunti, C., Int. J. Mod. Phys. A, 30, 2015, 1530001.
8. Tretyak, V.I., Zdesenko, Y.G., At. Data Nucl. Data Tables, 61, 1995, 43.
9. Tretyak, V.I., Zdesenko, Y.G., At. Data Nucl. Data Tables, 80, 2002, 83.
10. Wang, M., et al. Chinese Phys. C, 36, 2012, 1603.
11. Meshik, A.P., et al. Phys. Rev. C, 64, 2001, 035205.
12. Pujol, M., et al. Geochim. Cosmochim. Acta, 73, 2009, 6834.
13. Cerulli, R., et al. Nucl. Instrum. Methods A 525 (2004), 535–543.
14. Belli, P., et al. Nuclear Phys. A 930 (2014), 195–208.
15. http://scintillator.lbl.gov/.
16. Belli, P., et al. Nucl. Instrum. Methods Phys. Res. Sect. A, 615, 2010, 301.
17. Barabash, A.S., et al. Nucl. Instrum. Methods A, 833, 2016, 77.
18. R. Bernabei, et al., Proc. 16th Lom. Conf. Elem. Part. Phy. 2015, p. 300.
19. Boiko, R.S., et al. Eur. Phys. J. Web Conf., 65, 2014, 04001.
20. Bernabei, R., et al. AIP Conf. Proc., 1549, 2013, 189.
21. Danevich, F.A., et al. AIP Conf. Proc., 1549, 2013, 201.
22. Polischuk, P.G., et al. AIP Conf. Proc., 1549, 2013, 124.
23. Cappella, F., et al. Eur. Phys. J. C, 73, 2013, 276.
24. Bernabei, R., et al. Il Nuovo Cimento A, 110, 1997, 189.
25. Belli, P., et al. Nuclear Phys. B, 563, 1999, 97.
26. Belli, P., et al. Astropart. Phys., 10, 1999, 115.
27. Bernabei, R., et al. Nuclear Phys. A, 705, 2002, 29.
28. Bernabei, R., et al. Phys. Lett. B, 527, 2002, 182.
29. Bernabei, R., et al. Phys. Lett. B, 546, 2002, 23.
30. Belli, P., et al. Nucl. Instrum. Methods A, 498, 2003, 352.
31. Bernabei, R., et al. Nucl. Instrum. Methods A 555 (2005), 270–281.
32. Bernabei, R., et al. Eur. Phys. J. A 27 (2006), 35–41.
33. Belli, P., et al. Phys. Rev. C, 76, 2007, 064603.
34. Belli, P., et al. Eur. Phys. J. A 36 (2008), 167–170.
35. Belli, P., et al. Nuclear Phys. A 826 (2009), 256–273.
36. Belli, P., et al. Nuclear Phys. A 824 (2009), 101–114.
37. Belli, P., et al. Eur. Phys. J. A 42 (2009), 171–177.
38. Belli, P., et al. Nuclear Phys. A 846 (2010), 143–156.
39. Belli, P., et al. J. Phys. G, 38, 2011, 015103.
40. Belli, P., et al. Nuclear Phys. A 859 (2011), 126–139.
41. Belli, P., et al. Eur. Phys. J. A, 47, 2011, 91.
42. Belli, P., et al. J. Phys. G, 38, 2011, 115107.
43. Belli, P., et al. Phys. Rev. C, 85, 2012, 044610.
44. Belli, P., et al. Nucl. Instrum. Methods A 670 (2012), 10–17.
45. Belli, P., et al. J. Phys. Conf. Ser., 375, 2012, 042024.
46. Belli, P., et al. Eur. Phys. J. A, 49, 2013, 24.
47. Poda, D.V., et al. Radiat. Meas. 56 (2013), 66–69.
48. Belli, P., et al. Phys. Rev. C, 87, 2013, 034607.
49. Bernabei, R., et al. AIP Conf. Proc. 1549 (2013), 189–196.
50. Belli, P., et al. Eur. Phys. J. A, 50, 2014, 134.
51. Das, Soumik, et al. Nucl. Instrum. Methods A 797 (2015), 130–137.
52. Danevich, F.A., et al. J. Phys. Conf. Ser., 718, 2016, 062009.
53. Belli, P., et al. Phys. Rev. C, 93, 2016, 045502.
54. Belli, P., et al. AIP Conf. Proc., 1894, 2017, 020005.
55. Belli, P., et al. Eur. Phys. J. A, 53, 2017, 172.
56. Polischuk, O.G., et al. AIP Conf. Proc., 1894, 2017, 020018.
57. Danevich, F.A., et al. Phys. Rev. C, 67, 2003, 014310.
58. Belli, P., et al. Nuclear Phys. A 789 (2007), 15–29.
59. Belli, P., et al. Nucl. Instrum. Methods A 572 (2007), 734–738.
60. Zdesenko, Yu.G., et al. Nucl. Instrum Methods A 538 (2005), 657–667.
61. Derenzo, S., et al. Nucl. Instrum. Methods A, 652, 2011, 247.
62. Eagleman, Y., et al. IEEE Trans. Nucl. Sci., 59, 2012, 479.
63. Gundiah, G., et al. Nucl. Instrum. Methods A, 652, 2011, 234.
64. Selling, J., et al. J. Appl. Phys., 101, 2007, 034901.
65. Selling, J., et al. J. Appl. Phys., 102, 2007, 074915.
66. Selling, J., et al. IEEE Trans. Nucl. Sci., 55, 2008, 1183.
67. Gundiah, G., et al. J. Lumin., 138, 2013, 143.
68. Yan, Z., et al. J. Cryst. Growth, 435, 2016, 42.
69. Bourret-Courchesne, E.D., et al. Nucl. Instrum. Methods A, 613, 2010, 95.
70. Bizarri, G., et al. IEEE Trans. Nucl. Sci., 58, 2011, 3403.
71. Shirwadkar, U., et al. IEEE Trans. Nucl. Sci., 60, 2013, 1011.
72. Yan, Z., et al. Nucl. Instrum. Methods A, 698, 2013, 7.
73. Yan, Z., et al. Nucl. Instrum. Methods Phys. Res. A, 735, 2014, 83.
74. Bourret-Courchesne, E.D., et al. J. Cryst. Growth, 352, 2012, 78.
75. Laval, M., et al. Nucl. Instrum. Methods, 206, 1983, 169.
76. Holl, I., et al. IEEE Trans. Nucl. Sci., 35, 1988, 105.
77. Melcher, C.L., et al. IEEE Trans. Nucl. Sci., 36, 1989, 1188.
78. van Eijk, C., et al. Experimental and theoretical studies of cross luminescence. Heavy Scintillators for Scientific and Industrial Applications, 2000, Editions Frontieres, Crystal 2-86332-128-5.
79. Derenzo, S.E., et al. IEEE Trans. Nucl. Sci., 47, 2000, 860.
80. Sakai, E., IEEE Trans. Nucl. Sci., 34, 1987, 418.
81. Visser, R., et al. IEEE Trans. Nucl. Sci., 38, 1991, 178.
82. Gektin, A.V., et al. IEEE Trans. Nucl. Sci., 56, 2009, 1002.
83. Gundiah, G., et al. IEEE Trans. Nucl. Sci., 57, 2010, 1702.
84. Van Loef, E.V., et al. IEEE Trans. Nucl. Sci., 54, 2007, 741.
85. Borade, R., et al. Nucl. Instrum. Methods A, 652, 2011, 260.
86. Bourret-Courchesne, E.D., et al. Nucl. Instrum. Methods A, 612, 2009, 138.
87. Alekhin, M.S., et al. J. Lumin., 145, 2014, 723.
88. Gascon, M., et al. J. Lumin., 156, 2014, 63.
89. Rowe, Emmanuel, et al. IEEE Trans. Nucl. Sci., 60, 2013, 1057.
90. Stand, L., et al. J. Lumin., 169, 2016, 301.
91. Pavlyuk, A.A., et al. Asia Pac. Soc. Adv. Mater., 1992, 26–29 Inst. Mat. Res., 1993, 164.
92. Borovlev, Yu.A., et al. J. Cryst. Growth, 229, 2001, 305.
93. Galashov, E.N., et al. Funct. Mater., 17, 2010, 504.
94. Grigoriev, D.N., et al. JINST, 9, 2014, C09004.
95. Barabash, A.S., et al. JINST, 6, 2011, P08011.
96. Barabash, A.S., et al. Eur. Phys. J. C, 74(10), 2014, 3133.
97. Musikhin, A.E., et al. J. Alloys Compd. 655 (2016), 165–171.
98. Belli, P., et al. Nucl. Instrum. Methods Phys. Res. A 626- 627 (2011), 31–38.
99. Ivanov, I.M., et al. Inorg. Mater. 44:12 (2008), 1330–1333.
100. Ge, W.W., et al. J. Appl. Phys., 98, 2005, 013542.
101. Laubenstein, M., Internat. J. Modern Phys. A, 32(30), 2017, 1743002.
102. http://www.lngs.infn.it.
103. Agostinelli, S., et al. Nucl. Instrum. Methods A, 506, 2003, 250.
104. Allison, J., et al. IEEE Trans. Nucl. Sci., 53, 2006, 270.
105. Bernabei, R., J. Phys. G: Nucl. Part. Phys., 38, 2011, 115107.
106. J.R. Lakowicz, Principles of Fluorescence Spectroscopy. ISBN 978-0-387-46312-4.
107. Tyagi, M., et al. J. Lumin. 128 (2008), 1528–1532.
108. Nikl, M., et al. J. Lumin. 87–89 (2000), 7–1136.
109. Kamenskikh, I.A., et al. Funct. Mater., 9, 2002, 2.
110. Kolobanov, V.N., et al. Nucl. Instrum. Methods A, 486, 2002, 496.
111. Annenkov, A.A., et al. Nucl. Instrum. Methods A, 490, 2002, 30.
112. Treadaway, M.J., Powell, R.C., et al. J. Chem. Phys., 61, 1974, 4003.
113. Blistanov, A.A., et al. Phys. Prop. Crys., Vol. 50. 2005, 284.
114. Grasser, R., et al. J. Lumin., 27, 1982, 263.
115. Grasser, R., et al. Phys. Status Solidi B, 69, 1975, 359.
116. Nikl, M., et al. Phys. Status Solidi B, 245, 2008, 1701.
117. Laasner, R., et al. J. Phys. Condens. Matter, 27, 2015, 385501.
|