Инд. авторы: | Kvasov B.I. |
Заглавие: | Construction of Hyperbolic Interpolation Splines |
Библ. ссылка: | Kvasov B.I. Construction of Hyperbolic Interpolation Splines // Computational Mathematics and Mathematical Physics. - 2008. - Vol.48. - Iss. 4. - P.539-548. - ISSN 0965-5425. - EISSN 1555-6662. |
Внешние системы: | DOI: 10.1134/S0965542508040039; РИНЦ: 13596396; SCOPUS: 2-s2.0-43249106577; WoS: 000262333800003; |
Реферат: | eng: The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
|
Издано: | Pleiades Publishing Ltd, 2008 |
Физ. характеристика: | с.539-548 |