Инд. авторы: Kvasov B.I.
Заглавие: Construction of Hyperbolic Interpolation Splines
Библ. ссылка: Kvasov B.I. Construction of Hyperbolic Interpolation Splines // Computational Mathematics and Mathematical Physics. - 2008. - Vol.48. - Iss. 4. - P.539-548. - ISSN 0965-5425. - EISSN 1555-6662.
Внешние системы: DOI: 10.1134/S0965542508040039; РИНЦ: 13596396; SCOPUS: 2-s2.0-43249106577; WoS: 000262333800003;
Реферат: eng: The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
Издано: Pleiades Publishing Ltd, 2008
Физ. характеристика: с.539-548