Инд. авторы: Shikin A.M., Rybkina A.A., Estyunin D.A., Sostina D.M., Klimovskikh I.I., Voroshnin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Petaccia L., Di Santo, G, Kimura A., Skirdkov P.N., Zvezdin K.A., Zvezdin A.K.
Заглавие: Dirac cone intensity asymmetry and surface magnetic field in V-doped and pristine topological insulators generated by synchrotron and laser radiation
Библ. ссылка: Shikin A.M., Rybkina A.A., Estyunin D.A., Sostina D.M., Klimovskikh I.I., Voroshnin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Petaccia L., Di Santo, G, Kimura A., Skirdkov P.N., Zvezdin K.A., Zvezdin A.K. Dirac cone intensity asymmetry and surface magnetic field in V-doped and pristine topological insulators generated by synchrotron and laser radiation // Scientific Reports. - 2018. - Vol.8. - Art.6544. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-018-24716-1; РИНЦ: 35521980; PubMed: 29695801; SCOPUS: 2-s2.0-85045963889; WoS: 000430795000043;
Реферат: eng: Effect of magnetization generated by synchrotron or laser radiation in magnetically-doped and pristine topological insulators (TIs) is presented and analyzed using angle-resolved photoemission spectroscopy. It was found that non-equal photoexcitation of the Dirac cone (DC) states with opposite momenta and spin orientation indicated by the asymmetry in photoemission intensity of the DC states is accompanied by the k(parallel to)-shift of the DC states relative to the non-spin-polarized conduction band states located at k(parallel to) = 0. We relate the observed k(parallel to)-shift to the induced surface in-plane magnetic field and corresponding magnetization due to the spin accumulation. The direction of the DC k(parallel to)-shift and its value are changed with photon energy in correlation with variation of the sign and magnitude of the DC states intensity asymmetry. The theoretical estimations describe well the effect and predict the DC k(parallel to)-shift values which corroborate the experimental observations. This finding opens new perspectives for effective local magnetization manipulation.
Ключевые слова: TORQUE; POLARIZATION; FERROMAGNETISM; HETEROSTRUCTURE; BI2SE3; LAYER;
Издано: 2018
Физ. характеристика: 6544
Цитирование: 1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067, https://doi.org/10.1103/RevModPhys.82.3045 (2010). 2. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101-1105, https://doi.org/10.1038/nature08234 (2009). 3. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5, 438-442, https://doi.org/10.1038/nphys1270 (2009). 4. Moore, J. Topological insulators: The next generation. Nat Phys 5, 378-380, https://doi.org/10.1038/nphys1294 (2009). 5. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat Nano 9, 218-224, https://doi.org/10.1038/nnano.2014.16 (2014). 6. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449-451, https://doi.org/10.1038/nature13534 (2014). 7. Fan, Y. et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater 13, 699-704 (2014). 8. Mc Iver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat Nano 7, 96-100, https://doi.org/10.1038/nnano.2011.214 (2012). 9. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309, https://doi.org/10.1103/PhysRevB.83.035309 (2011). 10. Shikin, A. M. et al. Surface spin-polarized currents generated in topological insulators by circularly polarized synchrotron radiation and their photoelectron spectroscopy indication. Physics of the Solid State 58, 1675-1686, https://doi.org/10.1134/S1063783416080266 (2016). 11. Shikin, A. M. et al. Out-of-plane polarization induced in magnetically-doped topological insulator Bi1.37V0.03Sb0.6Te2Se by circularly polarized synchrotron radiation above a Curie temperature. Applied Physics Letters 109, 222404 (2016). 12. Ogawa, N. et al. Zero-bias photocurrent in ferromagnetic topological insulator. Nature Communications 7, 12246 (2016). 13. Junck, A., Refael, G. & von Oppen, F. Photocurrent response of topological insulator surface states. Phys. Rev. B 88, 075144, https://doi.org/10.1103/PhysRevB.88.075144 (2013). 14. Shikin, A. M. et al. Anomalously large gap and induced out-of-plane spin polarization in magnetically doped 2D Rashba system: V-doped BiTeI. 2D Materials 4, 025055. http://stacks.iop.org/2053-1583/4/i=2/a=025055 (2017). 15. Shikin, A. M. et al. Synchrotron radiation induced magnetization in magnetically-doped and pristine topological insulators. arXiv:1707.08798, (2017). 16. Samarth, N. Condensed-matter physics: Magnetism in flatland. Nature 546, 216-218, https://doi.org/10.1038/546216a (2017). 17. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270-273, https://doi.org/10.1038/nature22391 (2017). 18. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265-269, https://doi.org/10.1038/nature22060 (2017). 19. Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Letters 17, 3493-3500. https://doi.org/10.1021/acs.nanolett.7b00560, PMID: 28545300 (2017). 20. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Materials 4, 025082, http://stacks.iop.org/2053-1583/4/i=2/a=025082 (2017). 21. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, https://doi.org/10.1038/nature19820 (2016). 22. Rosenberg, G. & Franz, M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012). 23. Henk, J. et al. Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3. Phys. Rev. Lett. 109, 076801, https://doi.org/10.1103/PhysRevLett.109.076801 (2012). 24. Semenov, Y. G., Li, X. & Kim, K. W. Tunable photogalvanic effect on topological insulator surfaces via proximity interactions. Phys. Rev. B 86, 201401, https://doi.org/10.1103/PhysRevB.86.201401 (2012). 25. Zhu, Z.-H. et al. Photoelectron spin-polarization control in the topological insulator Bi2Se3. Phys. Rev. Lett. 112, 076802, https://doi.org/10.1103/PhysRevLett.112.076802 (2014). 26. Zhang, H., Liu, C.-X. & Zhang, S.-C. Spin-orbital texture in topological insulators. Phys. Rev. Lett. 111, 066801, https://doi.org/10.1103/PhysRevLett.111.066801 (2013). 27. Cao, Y. et al. Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nature Physics 9, 499-504, https://doi.org/10.1038/nphys2685 (2013). 28. Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). 29. Zhu, J.-J., Yao, D.-X., Zhang, S.-C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011). 30. Meier, F. & Zakharchenya, B. P. Optical orientation (Elsevier 2012). 31. Schmidt, T. M., Miwa, R. H. & Fazzio, A. Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators. Phys. Rev. B 84, 245418 (2011). 32. Petaccia, L. et al. BaD ElPh: A 4m normal-incidence monochromator beamline at Elettra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 606(3), 780-784, https://doi.org/10.1016/j.nima.2009.05.001 (2009).