Цитирование: | 1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067, https://doi.org/10.1103/RevModPhys.82.3045 (2010).
2. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101-1105, https://doi.org/10.1038/nature08234 (2009).
3. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5, 438-442, https://doi.org/10.1038/nphys1270 (2009).
4. Moore, J. Topological insulators: The next generation. Nat Phys 5, 378-380, https://doi.org/10.1038/nphys1294 (2009).
5. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat Nano 9, 218-224, https://doi.org/10.1038/nnano.2014.16 (2014).
6. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449-451, https://doi.org/10.1038/nature13534 (2014).
7. Fan, Y. et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater 13, 699-704 (2014).
8. Mc Iver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat Nano 7, 96-100, https://doi.org/10.1038/nnano.2011.214 (2012).
9. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309, https://doi.org/10.1103/PhysRevB.83.035309 (2011).
10. Shikin, A. M. et al. Surface spin-polarized currents generated in topological insulators by circularly polarized synchrotron radiation and their photoelectron spectroscopy indication. Physics of the Solid State 58, 1675-1686, https://doi.org/10.1134/S1063783416080266 (2016).
11. Shikin, A. M. et al. Out-of-plane polarization induced in magnetically-doped topological insulator Bi1.37V0.03Sb0.6Te2Se by circularly polarized synchrotron radiation above a Curie temperature. Applied Physics Letters 109, 222404 (2016).
12. Ogawa, N. et al. Zero-bias photocurrent in ferromagnetic topological insulator. Nature Communications 7, 12246 (2016).
13. Junck, A., Refael, G. & von Oppen, F. Photocurrent response of topological insulator surface states. Phys. Rev. B 88, 075144, https://doi.org/10.1103/PhysRevB.88.075144 (2013).
14. Shikin, A. M. et al. Anomalously large gap and induced out-of-plane spin polarization in magnetically doped 2D Rashba system: V-doped BiTeI. 2D Materials 4, 025055. http://stacks.iop.org/2053-1583/4/i=2/a=025055 (2017).
15. Shikin, A. M. et al. Synchrotron radiation induced magnetization in magnetically-doped and pristine topological insulators. arXiv:1707.08798, (2017).
16. Samarth, N. Condensed-matter physics: Magnetism in flatland. Nature 546, 216-218, https://doi.org/10.1038/546216a (2017).
17. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270-273, https://doi.org/10.1038/nature22391 (2017).
18. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265-269, https://doi.org/10.1038/nature22060 (2017).
19. Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Letters 17, 3493-3500. https://doi.org/10.1021/acs.nanolett.7b00560, PMID: 28545300 (2017).
20. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Materials 4, 025082, http://stacks.iop.org/2053-1583/4/i=2/a=025082 (2017).
21. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, https://doi.org/10.1038/nature19820 (2016).
22. Rosenberg, G. & Franz, M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012).
23. Henk, J. et al. Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3. Phys. Rev. Lett. 109, 076801, https://doi.org/10.1103/PhysRevLett.109.076801 (2012).
24. Semenov, Y. G., Li, X. & Kim, K. W. Tunable photogalvanic effect on topological insulator surfaces via proximity interactions. Phys. Rev. B 86, 201401, https://doi.org/10.1103/PhysRevB.86.201401 (2012).
25. Zhu, Z.-H. et al. Photoelectron spin-polarization control in the topological insulator Bi2Se3. Phys. Rev. Lett. 112, 076802, https://doi.org/10.1103/PhysRevLett.112.076802 (2014).
26. Zhang, H., Liu, C.-X. & Zhang, S.-C. Spin-orbital texture in topological insulators. Phys. Rev. Lett. 111, 066801, https://doi.org/10.1103/PhysRevLett.111.066801 (2013).
27. Cao, Y. et al. Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nature Physics 9, 499-504, https://doi.org/10.1038/nphys2685 (2013).
28. Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).
29. Zhu, J.-J., Yao, D.-X., Zhang, S.-C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011).
30. Meier, F. & Zakharchenya, B. P. Optical orientation (Elsevier 2012).
31. Schmidt, T. M., Miwa, R. H. & Fazzio, A. Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators. Phys. Rev. B 84, 245418 (2011).
32. Petaccia, L. et al. BaD ElPh: A 4m normal-incidence monochromator beamline at Elettra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 606(3), 780-784, https://doi.org/10.1016/j.nima.2009.05.001 (2009).
|