Инд. авторы: Kolpakova M.N, Gaskova O.L.
Заглавие: Major ions behaviour during evaporation of different saline type water of Western Mongolian lakes (geochemical modelling)
Библ. ссылка: Kolpakova M.N, Gaskova O.L. Major ions behaviour during evaporation of different saline type water of Western Mongolian lakes (geochemical modelling) // HYDROLOGY RESEARCH. - 2018. - Vol.49. - Iss. 1. - P.163-176. - ISSN 0029-1277.
Внешние системы: DOI: 10.2166/nh.2017.148; РИНЦ: 35540162; SCOPUS: 2-s2.0-85042103401; WoS: 000429613800012;
Реферат: eng: The main Mongolian water resources are lakes whose volume has significantly reduced in recent years as a consequence of global warming. This article presents research on three different types of nearly disposed Western Mongolian lakes with a wide range of brines' composition: Shaazgai-Nuur (soda), Davsan-Nuur (chloride) and Tonhil-Nuur (sulfate). The aim of this study was to determine the differences in geochemical evolution associated with evaporation-crystallization processes of representative lakes of various chemical types. The modelling was performed by using PHREEQC and HCh software that allows application of Pitzer's approach for saline solutions. The modelling was performed for these natural objects for the first time. The model demonstrated that the evaporation-crystallization processes are different for soda and chloride/sulfate brines. Soda type lake maintained unchanged ion composition while chemical composition of chloride and sulfate lakes went through significant alterations according to a sequence of mineral precipitation. The calculated model did not confirm the possibility of long-term transformation from SO4-Mg brines to Cl-Mg due to evaporative concentration only; additional factors including mixing with inflow water also influence sodium and chloride increase. Close agreement between the model and the actual mineralogical data was observed, testifying to the proper software and reliability of our assumptions.
Ключевые слова: SEDIMENTS; TEMPERATURES; BASIN; URANIUM; EVOLUTION; saline lakes; PHREEQC; Mongolia; HCh; geochemical modeling; evaporation; SALT LAKES; REGION;
Издано: 2018
Физ. характеристика: с.163-176
Цитирование: 1. Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N, Fabbri, A. & Gaucher, E. C. 2012 Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry 27, 2107-2116. doi: 10.1016/j.apgeochem.2012.06.002. 2. Bozau, E. 2013 Prozessmodellierung hochsalinarer Wässer mit einem erweiterten PHREEQC-Datensatz. (Extension of the PHREEQC database 'pitzer.dat' for modeling hydrogeochemical processes in saline waters and brines). Grundwasser - Zeitschrift der Fachsektion Hydrogeologie 18, 93-98. doi: 10.1007/s00767-013-0222-8. 3. Bukaty, M. B. 1997 Software development in the oil and gas hydrogeology. Prospect and Protection of Mineral Resources 2, 37-39 (in Russian). 4. Dagvadorj, D., Natsagdorj, L., Dorjpurev, J. & Namkhainyam, B. 2010 Mongolia Assessment Report on Climate Change 2009. Ministry of Nature, Environment and Tourism, Ulan Bator. 5. Eugster, H. P. & Baumgartner, L. 1987 Mineral solubilities and speciation in supercritical metamorphic fluids. Reviews in Mineralogy 17, 367-403. 6. Gamazo, P., and Bea., S. A., Saaltink, M. W., Carrera, J. & Ayora, C. 2011 Modelling the interaction between evaporation and chemical composition in a natural saline system. Journal of Hydrology 401, 154-164. doi: 10.1016/j.jhydrol.2011.02.018. 7. Garrels, R M. & Christ, C. L. 1965 Solutions, Minerals and Equilibria. Harper & Row, New York. 8. Garrels, R. M. & Mackenzie, F. T. 1967 Origin of the chemical composition of some springs and lakes. In: Equilibrium Concepts in Natural Water Systems, Vol. 67 (R. F. Gould, ed.). American Chemical Society, Washington, DC, pp. 222-242. 9. Gaskova, O. L. & Sklyarova, O. A. 2013 Influence of natural organic acids on the Mg/Ca ratio in the bottom sediments of highly mineralized lakes. Russian Geology and Geophysics 54, 637-645. doi: 10.1016/j.rgg.2013.04.013. 10. Gaskova, O. L., Solotchina, E. P. & Sklyarova, O. A. 2011 Reconstruction of solution chemistry evolution based on the sedimentary record of salt lakes in the Olkhon region. Russian Geology and Geophysics 52, 548-554. doi: 10.1016/j.rgg.2011.04.007. 11. Gaskova, O. L., and Isupov., V. P., Vladimirov, A. G, Shvartsev, S. L. & Kolpakova, M. N. 2015 Thermodynamic model of uranium and arsenic behavior in Shaazgai-Nuur saline lake (Northwestern Mongolia). Doklady Earth Sciences 465, 1159-1163. doi: 10.1134/S1028334X15110094. 12. Hardie, L. A. & Eugster, H. P. 1970 The evolution of closed-basin brines. Mineralogical Society of America Spec. Publ. 3, 273-290. 13. Helgeson, H. C, Kirkham, D. H. & Flowers, G H. 1981 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients and apparent molal and standard and relative partial molal properties to 600 C and 5 kb. American Journal of Science 281, 1249-1516. 14. Herrero, M. J., Escavy, J. I. & Schreiber, B. C. 2015 Thenardite after mirabilite deposits as a cool climate indicator in the geological record: lower Miocene of central Spain. Climate of the Past 11, 1-13. doi: 10.5194/cp-11-1-2015. 15. Isupov, V P., Ariunbileg, S., Razvorotneva, L. I., Lyakhov, N. Z., Shvartsev, S. L., Vladimirov, A. G, Kolpakova, M. N, Shatskaya, S. S., Chupakhina, L. E., Moroz, E. N. & Kuibida, L. V 2013 Geochemical model of uranium accumulation in Shaazgai-Nuur Lake (Northwestern Mongolia). Doklady Earth Sciences 448(1), 143-148. doi: 10.1134/S1028334X12120161. 16. Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., Nõges, P., and Attayde., J. L., Zohary, T, Coppens, J., Bucak, T, Menezes, R F., Freitas, F. R. S., Kernan, M., Søndergaard, M. & Beklioglu, M. 2015 Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750 (1), 201-227. doi: 10.1007/s10750-014-2169-x. 17. Jones, B. F 1966 Geochemical evolution of closed basin waters in the western Great Basin. In Proceedings of the Second Symposium on Salt, Vol. 1, Cleveland, OH, pp. 181-200. 18. Jones, B. F. & Deocampo, D. M. 2003 Geochemistry of saline lakes. Treatise on Geochemistry 5, 393-424. 19. Jones, B. F., and Naftz., D. L., Spencer, R J. & Oviatt, C. O. 2009 Geochemical evolution of Great Salt Lake, Utah, USA. Aquatic Geochemistry 15, 95-121. DOI 10.1007/s10498-008-9047-y. 20. Kolpakova, M. N. & Gaskova, O. L. 2015 Inorganic forms of lithophile elements migration in the lakes of western Mongolia (physical-chemical calculations). In: Proceedings of Russian Annual Seminar on Experimental Mineralogy, Petrology and Geochemistry (RASEMPG - 2015). Moscow, pp. 383-388 (in Russian). 21. Kolpakova, M. N, Isupov, V. P. & Shvartsev, S. L. 2014 Physical and chemical calculations of secondary mineralogenesis in lakes of the Western Mongolia. Bulletin of the Tomsk Polytechnic University 325 (1), 102-110 (in Russian). 22. Krumgalz, B. S., Pogorelsky, R, Sokolov, A. & Pitzer, K. S. 2000 Volumetric ion interaction parameters for single-solute aqueous electrolyte solution at various temperatures. Journal of Physical and Chemical Reference Data 29, 1123-1140. doi: 10.1063/1.1321053. 23. Leonova, G. A., and Bobrov., V. A., Bogush, A. A., Bychinskii, V. A. & Anoshin, G. N. 2007 Geochemical characteristics of the modern state of salt lakes in Altai krai. Geochemistry International 45 (10), 1025-1039. doi: 10.1134/S0016702907100060. 24. Lopez, P. L. & Mandado, J. M. 2007 Experimental Evaporation of Superficial Brines From Continental Playa-Lake Systems Located in Central Ebro Basin (Northeast Spain), Vol. 285. Geological Society, London, Special Publications, pp. 143-154. doi: 10.1144/SP285.8. 25. Lytras, E. 2007 Developing models for lake management. Desalination 213, 129-134. doi:10.1016/j.desal.2006.05.060. 26. Marinov, N. A. 1967 Geological Studies of the MPR. Nauka, Moscow. 27. Marion, G M., Mironenko, M. V. & Roberts, M. W. 2010 FREZCHEM: a geochemical model for cold aqueous solutions. Computers & Geosciences 36, 10-15. doi: 10.1016/j.cageo.2009.06.004. 28. Mees, F., Carmen Castañeda, C, Herrero, J. & Van Ranst, E. 2011 Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, Spain). Sedimentary Geology 238, 106-115. doi: 10.1016/j.sedgeo.2011.04.006. 29. Merkel, B. & Planer-Friedrich, B. 2005 Groundwater Geochemistry - A Practical Guide to Modelling of Natural and Contaminated Aquatic Systems, 1st edn. Springer Verlag, Berlin. doi: 10.1007/978-3-540-74668-3. 30. Nordstrom, D. K. & Campbell, K. M. 2014 Modeling low-temperature geochemical processes. In: Treatise on Geochemistry, Vol. 7, 2nd edn. (H. D. Holland & K. K. Turekian, eds). Elsevier, Oxford, pp. 27-68. 31. Parkhurst, D. L. & Appelo, C. A. J. 2013 Description of Input and Examples for PHREEQC Version 3-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Geological Survey, Denver, Colorado. 32. Pitzer, K. S. 1987 A thermodynamic model for aqueous solutions of liquid-like density. Reviews in Mineralogy 17, 97-142. 33. Rasskazov, A. A., Luvsandorg, Sh., Sevastyanov, D. V, Tserensodnom, G & Egorov, A. N. 1991 Lakes of MPR and their mineral resources. Nauka, Moscow. 34. Sevastyanov, D. V, Shuvalov, V F. & Neustrueva, I. Y. 1994 Limnology and Paleolimnology of Mongolia. Nauka, St. Petersburg (in Russian). 35. Shvarov, Y. V. 2008 HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochemistry International 46, 834-839. doi: 10.1134/S0016702908080089. 36. Shvartsev, S. L., Kolpakova, M. N, Isupov, V P., Vladimirov, A. G & Ariunbileg, S. 2014 Geochemistry and chemical evolution of saline lakes of Western Mongolia. Geochemistry International 52 (5), 388-403. doi: 10.1134/S0016702914030070. 37. Sklyarova, O. A., Sklyarov, E. V & Menshagin, Y 2012 Concentration of trace elements in small lakes of the Ingoda basin (Chita region, Russia). Russian Geology and Geophysics 53 (12), 1324-1334. doi: 10.1016/j.rgg.2012.10.005. 38. Strakhov, N. M. 1962 Fundamentals of the Theory of Lithogenesis. Vol. 3: Regularities of the Composition and Distribution of Arid Sediments. AN SSSR Moscow (in Russian). 39. Surinaidu, L. 2016 Role of hydrogeochemical process in increasing groundwater salinity in the central Godavari delta. Hydrology Research 47 (2), 373-389. doi: 10.2166/nh.2015.050. 40. Tserensodnom, Zh. 2000 Catalogue of the Mongolian Lakes. Shuuvun Saraal, Ulan-Batar (in Mongolian). 41. Wang, H., Sankarasubramanian, A. & Ranjithan, R S. 2015 Understanding the low-frequency variability in hydroclimatic attributes over the southeastern US. Journal of Hydrology 521, 170-181. doi: 10.1016/j.jhydrol.2014.09.081. 42. Williams, W. D. 1991 Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia 210, 39-66. 43. Yang, Y, Fang, X., Li, M., Galy, A, Koutsodendris, A. & Zhang, W. 2015 Paleoenvironmental implications of uranium concentrations in lacustrine calcareous clastic-evaporate deposits in the western Qaidam Basin. Paleogeography, Paleoclimatology, Paleoecology 417, 422-431. doi: 10.1016/j.palaeo.2014.10.002. 44. Yihdego, Y, Webb, J. & Yihdego, P. L. 2016 Modelling water and salt balances in a deep, groundwater-throughflow lake - Lake Purrumbete, southeastern Australia. Hydrological Science Journal-Journal des Sciences Hydrologiques 61 (1), 186-199. http://dx.doi.org/10.1080/02626667.2014.975132. 45. Zheng, M. 2001 In: Saline Lakes: Publications from the 7th International Conference on Salt Lakes, Death Valley National Park, California, September 1999 (J. M. Melack, R. Jellison & D. B. Herbst, eds). Springer, Dordrecht, The Netherlands, pp. 339-347. doi:10.1007/978-94-017-2934-5-31. 46. Zheng, M., Zhao, Y & Liu, J. 2000 Paleoclimatic indicators of China's Quaternary saline lake sediments and hydrochemistry. Acta Geologica Sinica 74, 259-265. doi: 10.1111/j.1755-6724.2000.tb00459.x.