Инд. авторы: Golovin A.V., Sharygin I.S., Kamenetsky V.S., Korsakov A.V., Yaxley G.M.
Заглавие: Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites
Библ. ссылка: Golovin A.V., Sharygin I.S., Kamenetsky V.S., Korsakov A.V., Yaxley G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites // Chemical Geology. - 2018. - Vol.483. - P.261-274. - ISSN 0009-2541. - EISSN 1878-5999.
Внешние системы: DOI: 10.1016/j.chemgeo.2018.02.016; РИНЦ: 35535338; SCOPUS: 2-s2.0-85044090261; WoS: 000429492300023;
Реферат: eng: Identification of the primary compositions of mantle-derived melts is crucial for understanding mantle compositions and physical conditions of mantle melting. However, these melts rarely reach the Earth's surface unmodified because of contamination, crystal fractionation and degassing, processes that occur almost ubiquitously after melt generation. Here we report snapshots of the melts preserved in sheared peridotite xenoliths from the Udachnaya-East kimberlite pipe, in the central part of the Siberian craton. These xenoliths are among the deepest mantle samples and were delivered by kimberlite magma from 180-230 km depth interval, i.e. from the base of the cratonic lithosphere. The olivine grains of the sheared peridotites contain secondary inclusions of the crystallized melt with bulk molar (Na + K)/Ca similar to 3.4. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-carbonates, Na-Mg-carbonates with additional anions, alkali sulphates and halides are predominant among the daughter minerals in secondary melt inclusions, whereas silicates, oxides, sulphides and phosphates are subordinate. These inclusions can be considered as Cl-S-bearing alkali-carbonate melts. The presence of aragonite, a high-pressure polymorph of CaCO3, among the daughter minerals suggests a mantle origin for these melt inclusions. The secondary melt inclusions in olivine from the sheared peridotite xenoliths and the melt inclusions in phenocrystic olivines from the host kimberlites demonstrate similarities, in daughter minerals assemblages and trace-element compositions. Moreover, alkali-rich minerals (carbonates, halides, sulphates and sulphides) identified in the studied melt inclusions are also present in the groundmass of the host kimberlites. These data suggests a genetic link between melt enclosed in olivine from the sheared peridotites and melt parental to the Udachnaya-East kimberlites. We suggest that the melt inclusions in olivine from mantle xenoliths may represent near primary, kimberlite melts. These results are new evidence in support of the alkali-carbonate composition of kimberlite melts in their source regions, prior to the kimberlite emplacement into the crust, and are in stark contrast to the generally accepted ultramafic silicate nature of parental kimberlite liquids.
Ключевые слова: CONTINENTAL LITHOSPHERE; DEEP MANTLE; SIBERIAN CRATON; PHASE-RELATIONS; FLUID INCLUSIONS; UNALTERED KIMBERLITES; DIAMOND FORMATION; PERIDOTITE XENOLITHS; Aragonite; Alkaline minerals; Melt inclusions; Mantle metasomatism; Carbonatite melts; Kimberlites; Mantle xenoliths; UDACHNAYA-EAST PIPE; LIQUID IMMISCIBILITY;
Издано: 2018
Физ. характеристика: с.261-274
Цитирование: 1. Abersteiner, A., Giuliani, A., Kamenetsky, V.S., Phillips, D., Petrographic and melt inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem. Geol. 455 (2017), 326–336. 2. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161 (2013), 201–215. 3. Andersen, T., Neumann, E.-R., Fluid inclusions in mantle xenoliths. Lithos 55 (2001), 301–320. 4. Araújo, D.P., Griffin, W.L., O'Reilly, S.Y., Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton. Lithos 112 (2009), 675–682. 5. Bascou, J., Doucet, L.S., Saumet, S., Ionov, D.A., Ashchepkov, I.V., Golovin, A.V., Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth Planet. Sci. Lett. 304 (2011), 71–84. 6. Beyer, C., Frost, D.J., The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle. Earth Planet. Sci. Lett. 461 (2017), 30–39. 7. Bolotina, N.B., Gavryushkin, P.N., Korsakov, A.V., Rashchenko, S.V., Seryotkin, Y.V., Golovin, A.V., Moine, B.N., Zaitsev, A.N., Litasov, K.D., Incommensurately modulated twin structure of nyerereite Na1.64K0.36Ca(CO3)2. Acta Crystallogr. B 73 (2017), 276–284. 8. Boullier, A.M., Nicolas, A., Classification of texture and fabric of peridotite xenoliths from South African kimberlits. Phys. Chem. Earth 9 (1975), 467–476. 9. Brett, R.C., Russell, J.K., Moss, S., Origin of olivine in kimberlite: phenocryst or impostor?. Lithos 112 (2009), 201–212. 10. Brett, R., Russell, J., Andrews, G., Jones, T., The ascent of kimberlite: insights from olivine. Earth Planet. Sci. Lett. 424 (2015), 119–131. 11. Brey, G.P., Köhler, T., Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31 (1990), 1353–1378. 12. Campeny, M., Kamenetsky, V.S., Melgarejo, J.C., Mangas, J., Manuel, J., Alfonso, P., Kamenetsky, M.B., Bambi, A.C.J.M., Gonçalves, A.O., Carbonatitic lavas in Catanda (Kwanza Sul, Angola): mineralogical and geochemical constraints on the parental melt. Lithos 232 (2015), 1–11. 13. Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., Sharygin, V.V., Golovin, A.V., Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chem. Geol. 353 (2013), 112–131. 14. Dalton, J.A., Wood, B.J., The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 119 (1993), 511–525. 15. Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G., Hirschmann, M.M., Carbon-dioxide-rich silicate melt in the Earth's upper mantle. Nature 493 (2013), 211–215. 16. Doucet, L.S., Ionov, D.A., Golovin, A.V., Pokhilenko, N.P., Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 359–360 (2012), 206–218. 17. Doucet, L.S., Ionov, D.A., Golovin, A.V., The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165 (2013), 1225–1242. 18. Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov, A.G., Ashchepkov, I.V., High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137 (2014), 159–187. 19. Drury, M.R., van Roermund, H.L.M., Fluid assisted recrystallization in upper mantle peridotite xenoliths from kimberlites. J. Petrol. 30 (1989), 133–152. 20. Dziewonski, A.M., Anderson, D.L., Preliminary reference Earth model. Phys. Earth Planet. Inter. 25 (1981), 297–356. 21. Edwards, H.G.M., Villar, S.E.J., Jehlicka, J., Munshi, T., FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim. Acta A 61 (2005), 2273–2280. 22. Falloon, T.J., Green, D.H., The solidus of carbonated, fertile peridotite. Earth Planet. Sci. Lett. 94 (1989), 364–370. 23. Finnerty, A.A., Boyd, F.R., Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle. Mantle Xenoliths, 1987, John Wiley & Sons, Chichester, 381–402. 24. Frost, R.L., Dickfos, M.J., Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim. Acta A 71 (2008), 143–146. 25. Gao, J., Huang, W., Wu, X., Fan, D., Wu, Z., Xia, D., Qin, S., Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner. 42 (2015), 191–201. 26. Gavryushkin, P.N., Thomas, V.G., Bolotina, N.B., Bakakin, V.V., Golovin, A.V., Seryotkin, Y.V., Fursenko, D.A., Litasov, K.D., Hydrothermal synthesis and structure solution of Na2Ca(CO3)2: “synthetic analogue” of mineral nyerereite. Cryst. Growth Des. 16 (2016), 1893–1902. 27. Giuliani, A., Kamenetsky, V.S., Phillips, D., Kendrick, M.A., Wyatt, B.A., Goemann, K., Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40 (2012), 967–970. 28. Golovin, A.V., Sharygin, V.V., Petrogenetic analysis of fluid and melt inclusions in minerals from mantle xenoliths from the Bele pipe basanites (North Minusa depression). Russ. Geol. Geophys. 48 (2007), 811–824. 29. Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Mal'kovets, V.G., Kolesov, B.A., Sobolev, N.V., Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl. Earth Sci. 388 (2003), 93–96. 30. Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages. Petrology 15 (2007), 168–183. 31. Golovin, A.V., Korsakov, A.V., Zaitsev, A.N., In situ ambient and high-temperature Raman spectroscopic studies of nyerereite (Na,K)2Ca(CO3)2: can hexagonal zemkorite be stable at earth-surface conditions?. J. Raman Spectrosc. 46 (2015), 904–912. 32. Golovin, A.V., Goryainov, S.V., Kokh, S.N., Sharygin, I.S., Rashchenko, S.V., Kokh, K.A., Sokol, E.V., Devyatiyarova, A.S., The application of Raman spectroscopy to djerfisherite identification. J. Raman Spectrosc. 48 (2017), 1574–1582. 33. Golovin, A.V., Korsakov, A.V., Gavryushkin, P.N., Zaitsev, A.N., Thomas, V.G., Moine, B.N., Raman spectra of nyerereite, gregoryite and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J. Raman Spectrosc. 48 (2017), 1559–1565. 34. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East kimberlite. Chem. Geol. 455 (2017), 357–375. 35. Griffin, W.L., Smith, D., Boyd, F.R., Cousens, D.R., Ryan, C.G., Sie, S.H., Suter, G.F., Trace-element zoning in garnets from sheared mantle xenoliths. Geochim. Cosmochim. Acta 53 (1989), 561–567. 36. Griffin, W.L., Smith, D., Ryan, C.G., O'Reilly, S.Y., Win, T.T., Trace-element zoning in mantle minerals: metasomatism and thermal events in the upper mantle. Can. Mineral. 34 (1996), 1179–1193. 37. Haggerty, S.E., Superkimberlites: a geodynamic diamond window to the Earth's core. Earth Planet. Sci. Lett. 122 (1994), 57–69. 38. Harte, B., Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. Geology 85 (1977), 279–288. 39. Humphreys, E.R., Bailey, K., Hawkesworth, C.J., Wall, F., Najorka, J., Rankin, A.H., Aragonite in olivine from Calatrava, Spain – Evidence for mantle carbonatite melts from >100 km depth. Geology 38 (2010), 911–914. 40. Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S., Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett. 119 (1993), 283–297. 41. Ionov, D., Doucet, L., Ashchepkov, I., Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51 (2010), 2177–2210. 42. Ionov, D.A., Doucet, L.S., Pogge von Strandmann, P.A.E., Golovin, A.V., Korsakov, A.V., Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chem. Geol. 475 (2017), 105–121. 43. Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V., Oleinikov, O.B., Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim. Cosmochim. Acta 475 (2018), 105–121. 44. Irving, A.J., Wyllie, P.J., Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kbar. Geochim. Cosmochim. Acta 39 (1975), 35–53. 45. Kamenetsky, V.S., Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 158 (2015), 48–56. 46. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V., Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32 (2004), 845–848. 47. Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Golovin, A.V., Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas?. Geophys. Res. Lett., 34, 2007, L09316, 10.1029/2007GL029389. 48. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V., Kuzmin, D.V., Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J. Petrol. 49 (2008), 823–839. 49. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112 (2009), 334–346. 50. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Sobolev, N.V., Can pyroxenes be liquidus minerals in the kimberlite magma?. Lithos 112 (2009), 213–222. 51. Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., Sharygin, V.V., Maas, R., Ultra-fresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery?. Lithos 152 (2012), 173–186. 52. Kamenetsky, V.S., Grütter, H., Kamenetsky, M.B., Gömann, K., Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem. Geol. 353 (2013), 96–111. 53. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167. 54. Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., Thomas, R., Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral. Mag., 73, 2009, 797−816. 55. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413. 56. Keller, J., Zaitsev, A.N., Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148 (2012), 45–53. 57. Kennedy, L.A., Russell, J.K., Kopylova, M.G., Mantle shear zones revisited: the connection between the cratons and mantle dynamics. Geology 30 (2002), 419–422. 58. Kharkiv, A.D., Zuenko, V.V., Zinchuk, N.N., Kryuchkov, A.I., Ukhanov, A.V., Bogatykh, M.V., Petrochemistry of Kimberlites. [in Russian], 1991, Nedra, Moscow (304 pp.). 59. Kharkiv, A.D., Zinchuk, N.N., Kruchkov, A.I., Primary Diamond Deposits of the World. [in Russian], 1998, Nedra, Moscow (555 pp.). 60. Kinny, P.D., Griffin, W.L., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U–Pb ages of perovskite from Yakutian kimberlites. Russ. Geol. Geophys. 38 (1997), 91–99. 61. Kiseeva, E.S., Yaxley, G.M., Hermann, J., Litasov, K.D., Rosenthal, A., Kamenetsky, V.S., An experimental study of carbonated eclogite at 3.5–5.5 GPa: implications for silicate and carbonate metasomatism in the cratonic mantle. J. Petrol. 53 (2012), 727–759. 62. Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E., Kamenetsky, V.S., Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J. Petrol. 54 (2013), 1555–1583. 63. Kitayama, Y., Thomassot, E., Galy, A., Golovin, A., Korsakov, A., d'Eyrames, E., Assayag, N., Bouden, N., Ionov, D., Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): a record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem. Geol. 455 (2017), 315–330. 64. Klein-Ben David, O., Izraeli, E.S., Hauri, E., Navon, O., Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Cosmochim. Acta 71 (2007), 723–744. 65. Klein-Ben David, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Y., Hauri, E.H., Kaminsky, F.V., Sobolev, N.V., Navon, O., High-Mg carbonatitic microinclusions in some Yakutian diamonds – a new type of diamond-forming fluid. Lithos 112 (2009), 648–659. 66. Kogarko, L.N., Henderson, C.M.B., Pacheco, H., Primary Ca-rich carbonatite magma and carbonate-silicate-sulfide liquid immiscibility in the upper-mantle. Contrib. Mineral. Petrol. 121 (1995), 267–274. 67. Korsakov, A.V., Hermann, J., Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet. Sci. Lett. 241 (2006), 104–118. 68. Korsakov, A.V., De Gussem, K., Zhukov, V.P., Perraki, M., Vandenabeele, P., Golovin, A.V., Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 21 (2009), 1301–1311. 69. Korsakov, A.V., Golovin, A.V., Sharygin, I.S., Raman spectroscopic study of mica from ultra-fresh Udachnay-East kimberlites. Proc. GeoRaman XI, St Louis, USA, 2014, 141. 70. Leost, I., Stachel, T., Brey, G.P., Harris, J.W., Ryabchikov, I.D., Diamond formation and source carbonation: mineral associations in diamonds from Namibia. Contrib. Mineral. Petrol. 145 (2003), 15–24. 71. Litasov, K.D., Shatskiy, A., Ohtani, E., Yaxley, G.M., Solidus of alkaline carbonatite in the deep mantle. Geology 41 (2013), 79–82. 72. Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V., Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur. J. Mineral. 20 (2008), 317–331. 73. Longerich, H.P., Jackson, S.E., Gunther, D., Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atom. Spectrom. 11 (1996), 899–904. 74. Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Sobolev, N.V., Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 33 (2005), 549–552. 75. MacGregor, I.D., The system MgO-Al2O3-SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am. Mineral. 59 (1974), 110–119. 76. Marshintsev, V.K., Migalkin, K.N., Nikolaev, N.C., Barashkov, Y.P., Unaltered kimberlite of the Udachnaya East pipe. Doklady USSR. Acad. Sci. 231 (1976), 961–964. 77. McDonough, W.F., Sun, S.S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253. 78. McKenzie, D., Jackson, J., Priestley, K., Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233 (2005), 337–349. 79. Mercier, J.-C., Peridotite xenoliths and the dynamics of kimberlite intrusion. Proc. 2th Int. Kimb. Conf., 2, 1979, 197–212. 80. Mernagh, T.P., Kamenetsky, V.S., Kamenetsky, M.B., A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochim. Acta A Mol. Biomol. Spectrosc. 80A (2011), 82–87. 81. Mitchell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 174 (2008), 1–8. 82. Moine, B.N., Grégoirec, M., O'Reilly, S.Y., Delpech, G., Sheppard, S.M.F., Lorand, J.P., Renac, C., Giret, A., Cottin, J.Y., Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos 75 (2004), 239–252. 83. Nixon, P.H., A review of mantle xenoliths and their role in diamond exploration. J. Geodyn. 20 (1995), 305–329. 84. O'Reilly, S.Y., Griffin, W.L., The continental lithosphere-asthenosphere boundary: can we sample it?. Lithos 120 (2010), 1–13. 85. Palyanov, Y.N., Sokol, A.G., The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 112 (2009), 690–700. 86. Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F., Sobolev, N.V., Diamond formation from mantle carbonate fluids. Nature 400 (1999), 417–418. 87. Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., Vincze, L., Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507 (2014), 221–224. 88. Pokhilenko, N.P., Sobolev, N.V., Kuligin, S.S., Shimizu, N., Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., (eds.) 7th International Kimberlite Conference, 1999, 689–698. 89. Rudnick, R.L., McDonough, W.F., Chappell, B.W., Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet. Sci. Lett. 114 (1993), 463–475. 90. Russell, J.K., Porritt, L.A., Lavallee, Y., Dingwell, D.B., Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481 (2012), 352–356. 91. Schiano, P., Clocchiatti, R., Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368 (1994), 621–624. 92. Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Sobolev, N.V., Djerfisherite in unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl. Earth Sci. 390 (2003), 554–557. 93. Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Kamenetsky, V.S., Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. Eur. J. Mineral. 19 (2007), 51–63. 94. Sharygin, V.V., Kamenetsky, V.S., Kamenetskaya, M.B., Seretkin, Y.V., Pokhilenko, N.P., Rasvumite from the Udachnaya-East pipe: the first finding in kimberlites. Dokl. Earth Sci. 415 (2007), 929–934. 95. Sharygin, I.S., Golovin, A.V., Pokhilenko, N.P., Djerfisherite in kimberlites of the Kuoikskoe field as an indicator of enrichment of kimberlite melts in chlorine. Dokl. Earth Sci. 436 (2011), 301–307. 96. Sharygin, I.S., Golovin, A.V., Pokhilenko, N.P., Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): origin and relationship with kimberlitic magmatism. Russ. Geol. Geophys. 53 (2012), 247–261. 97. Sharygin, I.S., Litasov, K.D., Shatskiy, A.F., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 28 (2015), 1391–1414. 98. Sharygin, I.S., Litasov, K.D., Shatskiy, A., Safonov, O.G., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Experimental constraints on orthopyroxene dissolution in alkali carbonate melts in the lithospheric mantle: implications for kimberlite melt composition and magma ascent. Chem. Geol. 455 (2017), 44–56. 99. Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Litasov, K.D., Kupriyanov, I.N., Higo, Y., Borzdov, Y.M., Funakoshi, K., Palyanov, Y.N., Ohtani, E., Melting and subsolidus phase relations in the system Na2CO3-MgCO3 ± H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am. Mineral. 98 (2013), 2172–2182. 100. Shatskiy, A., Litasov, K., Palyanov, Y.N., Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ. Geol. Geophys. 56 (2015), 113–142. 101. Shatskiy, A., Litasov, K., Sharygin, I., Ohtani, E., Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 45 (2017), 208–227. 102. Shu, Q., Brey, G.P., Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 418 (2015), 27–39. 103. Sobolev, A.V., Sobolev, N.V., Smith, C.B., Dubessy, J., Fluid and melt compositions in lamproites and kimberlites based on the study of inclusions in olivine. Proc. 2th Int. Kimb. Conf.: Kimberlite and Related Rocks, 1(14), 1989, GSA Spec. Publ., 220–240. 104. Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G., Botkunov, A.I., Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39 (1997), 135–157. 105. Sobolev, N.V., Logvinova, A.M., Efimova, E.S., Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russ. Geol. Geophys. 50 (2009), 1234–1248. 106. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Malygina, E.V., Kuzmin, D.V., Sobolev, A.V., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112 (2009), 701–713. 107. Stachel, T., Harris, J.W., The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geol. Rev. 34 (2008), 5–32. 108. Stone, R.S., Luth, R.W., Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib. Mineral. Petrol., 171, 2016, 63. 109. Tappe, S., Pearson, G.D., Kjarsgaard, B.A., Nowell, G., Dowall, D., Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet. Sci. Lett. 371–372 (2013), 235–251. 110. Tappe, S., Romer, R.L., Stracke, A., Steenfelt, A., Smart, K.A., Muehlenbachs, K., Torsvik, T.H., Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Sci. Lett. 466 (2017), 152–167. 111. Thomson, A.R., Walter, M.J., Kohn, S.C., Brooker, R.A., Slab melting as a barrier to deep carbon subduction. Nature 529 (2016), 76–79. 112. Tomilenko, A.A., Kuzmin, D.V., Bul'bak, T.A., Sobolev, N.V., Primary melt and fluid inclusions in regenerated crystals and phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, Yakutia: the problem of the kimberlite melt. Dokl. Earth Sci. 475 (2017), 949–952. 113. Torsvik, T.H., Burke, K., Steinberger, B., Webb, S.J., Ashwal, L.D., Diamonds sampled by plumes from the core-mantle boundary. Nature 466 (2010), 352–355. 114. van Achterbergh, E., Griffin, W.L., Ryan, C.G., O'Reilly, S.Y., Pearson, N.J., Kivi, K., Doyle, B.J., Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30 (2002), 743–746. 115. Veksler, I.V., Lentz, D., Parental magmas of plutonic carbonatites, carbonate-silicate immisibility and decarbonation reactions: Evidence from melt and fluid inclusions. Melt Inclusions in Plutonic Rocks, vol. 36, 2006, Mineralogical Association of Canada, Quebec, 123–150. 116. Veksler, I.V., Nielsen, T.F.D., Sokolov, S.V., Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrol. 39 (1998), 2015–2031. 117. Wallace, M.E., Green, D.H., An experimental determination of primary carbonatite magma composition. Nature 335 (1988), 343–346. 118. Wyllie, P.J., Huang, W.L., Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3 (1975), 621–624. 119. Yaxley, G.M., Green, D.H., Kamenetsky, V., Carbonatite metasomatism in the southeastern Australian lithosphere. J. Petrol. 39 (1998), 1917–1930. 120. Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Golovin, A.V., An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140 (2012), 142–151. 121. Zaitsev, A.N., Keller, J., Spratt, J., Jeffries, T.E., Sharigin, V.V., Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geol. Ore Deposits 51 (2009), 608–616. 122. Zedgenizov, D.A., Rege, S., Griffin, W.L., Kagi, H., Shatsky, V.S., Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem. Geol. 240 (2007), 151–162.