Инд. авторы: Logvinova A.M., Wirth R., Zedgenizov D.A., Taylor L.A.
Заглавие: Carbonate-Silicate-Sulfide Polyphase Inclusion in Diamond from the Komsomolskaya Kimberlite Pipe, Yakutia
Библ. ссылка: Logvinova A.M., Wirth R., Zedgenizov D.A., Taylor L.A. Carbonate-Silicate-Sulfide Polyphase Inclusion in Diamond from the Komsomolskaya Kimberlite Pipe, Yakutia // Geochemistry International. - 2018. - Vol.56. - Iss. 4. - P.283-291. - ISSN 0016-7029. - EISSN 1531-8397.
Внешние системы: DOI: 10.1134/S0016702918040079; РИНЦ: 35487261; SCOPUS: 2-s2.0-85044949238; WoS: 000429237200001;
Реферат: eng: An aragonite inclusion in natural diamond was identified using techniques of transmission electron microscopy, electron microdiffraction, and microprobe analysis. The inclusion is hosted in a colorless octahedral diamond crystal from the Komslomolskaya pipe in Yakutia. The diamond crystal shows a zoned distribution of its admixtures and defects. The structure parameters of the inclusion (angle[001]/[201] = 66 degrees and certain lattice spacings) correspond to the calculated parameters of the orthorhombic unit cell of a Ca carbonate polymorph. The aragonite inclusion contains admixtures of MgO (0.81), MnO (0.58), and FeO (0.13 wt %). The find of a syngenetic aragonite inclusion in diamond is unique and proves that diamond can be formed in carbonatized mantle peridotite at depths of at least 300 km. The inclusion hosts identifiable microphases of Ni-rich sulfides (37-41 wt % Ni), titanite, hydrous silicate, magnetite, and fluid. This association indicates that the diamond and aragonite crystallized from a carbonate-silicate-sulfide melt or highdensity fluid.
Ключевые слова: ARAGONITE; CACO3; OCEANIC-CRUST; FORMING FLUIDS; HIGH-TEMPERATURE; FLUID INCLUSIONS; HIGH-PRESSURE; DEEP MANTLE; polyphase inclusions; fluid; sulfide; carbonates; mantle; diamond; aragonite; MINERAL INCLUSIONS; MAGNESITE;
Издано: 2018
Физ. характеристика: с.283-291
Цитирование: 1. S. M. Antao and I. Hassan, “Orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends,” Can. Mineral. 47 (5), pp. 1245–1255 (2009). 2. F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, “Carbonates from the lower part of transition zone or even the lower mantle,” Earth Planet. Sci. Lett. 260, 1–9 (2007). 3. G. P. Bulanova and L. P. Pavlova, “tAssemblage of magnetite peridotite in diamond from the Mir Pipe,” Dokl. Akad. Nauk SSSR 295 (6), 1452-1456. 4. A. Buob, R. W. Luth, M. W. Schmidt, and P. Ulmer, “Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature,” Am. Mineral. 91 (2-3), 435–440 (2006). 5. J. B. Dawson, “A review of the geology of kimberlite,” in Ultramafic and Related Rocks, Ed. by P. J. Wyllie (Wiley, New York, 1967), pp. 269–278. 6. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide inclusions in diamonds and peculiarities of their paragenesis, Zap. Vsesoyuz. Mineral. O-va 112 (3), 300–310 (1983). 7. V. K. Garanin and G. P. Kudryavtseva, “Mineralogy of diamond with inclusions from Yakutian kimberlites,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 2, 48–56 (1991). 8. B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 189–215 (2010). 9. W. Joswig, T. Stachel, J. W. Harris, W. H. Baur, and G. P. Brey, “New Ca-silicate inclusions in diamonds–tracers from the lower mantle,” Earth Planet. Sci. Lett. 173 (1), 1–6 (1999). 10. F. V. Kaminsky, O. D. Zakharchenko, R. M. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001). 11. F. V. Kaminsky R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association,” Can. Mineral. 51 (5), 669–688 (2013). 12. D. M. Kerrick and J. A. D. Connolly “Subduction of ophicarbonates and recycling of CO2 and H2O,” Geology 26 (4), 375–378 (1998). 13. O. Klein-BenDavid, D. G. Pearson, G. M. Nowell, C. Ottley, J. C. R. McNeill, A. Logvinova, and N. Sobolev, “The sources and time-integrated evolution of diamond-forming fluids–Trace elements and isotopic evidence,” Geochim. Cosmochim. Acta, 125, 146–169 (2014). 14. O. Klein-BenDavid, A. M. Logvinova, M. Schrauder, Z. V. Spetius, Y. Weiss, E. H. Hauri, F. V. Kaminsky, N. V. Sobolev, and O. Navon, “High-Mg carbonatitic microinclusions in some Yakutian diamonds- a new type of diamond-forming fluid,” Lithos 112S, 648–659 (2009). 15. O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon “Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids,” Geochim. Cosmochim. Acta 71, 723–724 (2007). 16. I. Leost, T. Stachel, G. P. Brey, J. W. Harris, and I. D. Ryabchikov, “Diamond formation and source carbonation: mineral associations in diamonds from Namibia,” Contrib. Mineral. Petrol. 145 (1), 15–24 (2003). 17. K. D. Litasov and E. Ohtani, “Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths,” Phys. Earth Planet. Inter. 177, 46–58 (2009). 18. K. D. Litasov and E. Ohtani, “The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle,” Earth Planet. Sci. Lett. 295, 115–126 (2010). 19. K. D. Litasov, A. F. Shatskiy, P. N. Gavryushkin, E. Altyna, A. E. Bekhtenova, P. I. Dorogokupets, S. Boris, B. S. Danilov, Yu. Higo, T. Abdirash, A.T. Akilbekov, M. Talgat, and T. M. Inerbaev, “P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: in situ X-ray diffraction study,” Phys. Earth Planet. Inter. 265, 82–91 (2017). 20. Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa, Geochem. Int. (6), 531–553 (2008). 21. A. Logvinova, R. Wirth, E. Fedorova, and N. Sobolev, “Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation,” Eur. J. Mineral. 20, 317–331 (2008). 22. A. M. Logvinova, R. Wirth, A. A. Tomilenko, V. P. Afanas’ev, and N. V. Sobolev, “The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform,” Russ. Geol. Geophys. 52 (11), 1286–1297 (2011). 23. R. W. Luth, Experimental determination of the reaction aragonite plus magnesite–dolomite at 5 to 9 GPa,” Contrib. Mineral. Petrol. 141 (2), 222–232 (2001). 24. I. Martinez, J. Zhang, and R. J. Reeder, “In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite,” Am. Mineral. 81, 611–624 (1996). 25. O. Navon, “High internal-pressures in diamond fluid inclusions determined by infrared absorbtion,” Nature, 353, 746–748 (1991). 26. S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya, “Postaragonite phase transformation in CaCO3 at 40 GPa,” Am. Mineral. 90, 667–671 (2005). 27. S. Ono, T. Kikegawa, and Y. Ohishi, “High-pressure transition of CaCO3,” Am. Mineral 92, 1246–1249 (2007). 28. M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 52, 761–771 (1994). 29. V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, and V. V. Kalinina, “Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins,” Eur. J. Mineral. 26, 41–52 (2014). 30. N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, E. S. Yefimova, T. T. Win, C. G. Ryan, and A. I. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997). 31. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, Y. V. Seryotkin, E. S. Yefimova, C. Floss, and L. A. Taylor, “Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study,” Lithos 77, 225–242 (2004). 32. N. V. Sobolev, A. M. Logvinova, and E. S. Efimova, “Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation,” Russ. Geol. Geophys. 50 (12), 1234–1248 (2009). 33. T. Stachel and J. W. Harris, “Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania,” Contrib. Mineral. Petrol. 132 (1), 34–47 (1998). 34. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II: lower mantle inclusion parageneses,” Contrib. Mineral. Petrol. 140 (1), 16–27 (2000). 35. T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009). 36. K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai, M. Kobayashi, A. Onodera, O. Shimomura, and T. Kikegawa, “Phase relations of CaCO3 at high pressure and high temperature,” Am. Mineral. 86, 997–1002 (2001). 37. R. Tappert, J. Foden, T. Stachel, K. Muehlenbachs, M. Tappert, and K. Wills, “Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin,” Geology 37(1), 43–46 (2009). 38. M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O.T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622–626 (2008). 39. M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, and S. B. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011). 40. Y. Weiss, R. Kessel, W. L. Griffin, I. Kiflawi, O. Klein-Ben-David, D. R. Bell, J. W. Harris, and O. Navon, “A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea,” Lithos 112S, 660–674 (2009). 41. R. Wirth, “Water in minerals detectable by electron energyloss srectroscopy EELS,” Phys. Chem. Mineral. 24, 561–568 (1997). 42. R. Wirth, “Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy,” Eur. J. Mineral. 16, 863–876 (2004). 43. D. A. Zedgenizov, H. K. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68 (1), 61–73 (2004). 44. D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Chloride–carbonate fluid in diamonds from the eclogite xenolith,” Dokl. Earth Sci. 415, 961–964 (2007). 45. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogeneous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014). 46. D. A. Zedgenizov, A. L. Ragozin, V. V. Kalinina and H. Kagi, “The mineralogy of Ca-Rich inclusions in sublithospheric diamonds,” Geochem. Int. 54 (10), 890–901 (2016).