Инд. авторы: Prokopyev I.R, Doroshkevich A.G., Redina A.A, Obukhov A.V.
Заглавие: Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?
Библ. ссылка: Prokopyev I.R, Doroshkevich A.G., Redina A.A, Obukhov A.V. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites? // Mineralogy and Petrology. - 2018. - Vol.112. - Iss. 2. - P.257-266. - ISSN 0930-0708. - EISSN 1438-1168.
Внешние системы: DOI: 10.1007/s00710-017-0534-y; РИНЦ: 35496565; SCOPUS: 2-s2.0-85045440633; WoS: 000428443200008;
Реферат: eng: The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.
Ключевые слова: FLUORAPATITE; ORIGIN; (Y+REE)-PHOSPHATE MINERALS; SIBERIAN-CRATON; FLUID-INDUCED NUCLEATION; Yakutia; Nimnyrskaya apatite zone; Seligdar deposit; Ust-Chulman; Dolomitic carbonatites; Fluid inclusion study; Mineralogy; Aldan shield; INCLUSIONS;
Издано: 2018
Физ. характеристика: с.257-266
Цитирование: 1. Armstrong J, Barnett R (2003) The association of Zn-chromite with diamondiferous lamprophyres and diamonds: unique compositions as a guide to the diamond potential of non-traditional diamond host rocks. Eighth International Kimberlite Conference, Victoria, Canada, 2003, Extended Abstracts Volume (CD-ROM), pp 1–3 2. Borisenko AS (1977) Study of the salt composition of solutions of gas-liquid inclusions in minerals by cryometric method. Geol Geofiz 18:16–27 (Russian) 3. Borisenko AS, Borovikov AA, Vasyukova EA, Pavlova GG, Ragozin AL, Prokopyev IR, Vladykin NV (2011) Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ Geol Geophys 52:144–164 4. Boyarko GY (1983) Geological and geochemical features of the Seligdar apatite deposits. PhD thesis, University of Tomsk/RU, 121 pp. (in Russian) 5. Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274/275:188–213 6. Chomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51:661–671 7. Doroshkevich AG, Wall F, Ripp GS (2007) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral Petrol 90:19–49 8. Egin VI, Kichigin LN (1973) Characteristics and prospects of apatite mineralization in the Central Aldan. News Yakutia Geol 3:75–80 (Russian) 9. Entin AR, Tyan OA (1984) Before-carbonatite step of formation of apatite deposits of Seligdar type (Aldan). USSR SB RAS, Yakutsk p. 28. (in Russian) 10. Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76 11. Ernst RE, Hamilton MA, Söderlund U, Hanes JA, Gladkochub DP, Okrugin AV, Kolotilina T, Mekhonoshin AS, Bleeker W, LeCheminant AN, Buchan KL, Chamberlain KR, Didenko AN (2016) Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat Geosci 9:464–469 12. Gladkochub DP, Donskaya TV, Ernst R, Mazukabzov AM, Sklyarov EV, Pisarevsky SA, Wingate M, Söderlund U (2012) Proterozoic basic magmatism of the Siberian craton: main stages and their geodynamic interpretation. Geotectonics 46(4):273–284 13. Harlov DE, Förster HJ (2003) Fluid-induced nucleation of REE phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229 14. Harlov DE, Förster HJ, Nijland TG (2002) Fluid induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261 15. Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286 16. Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution: pp 105–148 17. Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River diamondiferous placer, Venezuela: evidence of its metasomatic origin. Can Mineral 48:361–374 18. Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral (25):69–106 19. Mekhonoshin AS, Ernst R, Soderlund U, Hamilton MA, Kolotilin ATB, Izokh AE, Polyakov GV, Tolstykh ND (2016) Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russ Geol Geophys 57(5):822–833 20. Meyer HOA, Boyd FR (1972) Composition and origin of crystalline inclusions in natural diamonds. Geochim Cosmochim Acta 36:1255–1273 21. Prokopyev IR, Borisenko AS, Borovikov AA, Pavlova GG (2016) Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral Petrol 110(6):845–859 22. Prokopyev IR, Doroshkevich AG, Ponomarchuk AV, Sergeev SA (2017) Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol Rev 81:296–308 23. Ramdohr P (1945) Myrmekitische Verwachsungen Von Erzen. Neues Jahrbuch der Min. Beil-Bd 79 A:161–191 24. Roedder E (1984) Fluid inclusions, reviews in mineralogy, v.12. Mineralogical Society of America 25. Shokhonova MN, Donskaya TV, Gladkochub DP, Mazukabzov AM, Paderin IP (2010) Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russ Geol Geophys 51:815–832 26. Sitnikova MA, Zaitsev AN, Chakhmourodian AR, Pakhomovsky YaA, Wall F (2001) Ba-Sr-REE mineralisation in the Sallanlatvi carbonatites, Kola Peninsula, Russia as a key to understanding the evolution of the late stage carbonatites. Abstract of EUG XI, Strasbourg, p 492 27. Smirnov FL, Marshintsev ZK, Moskvitina AV et al. (1976) Typomorphic features of apatite deposits and occurrences of the Aldan Shield. Phosphorus Geochemistry and mineralogy characteristics of apatite. Yakutsk, USSR SB RAS, pp 5–31 (in Russian) 28. Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800 °C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282:58–66 29. Wall F, Zaitsev AN (eds) (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline province. The Mineralogical Society of Great Britain and Ireland, London, p 498 30. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral (95):185–187 31. Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements 8:355–360 32. Zaitsev AI, Entin AR, Nenashev NI, Lazebnik KA, n OA (1992) Geochronology and isotope geochemistry of carbonatites from Yakutia. YSC SB RAS, Yakutsk p 246