Инд. авторы: Fan J.W., Cojocaru I., Becker J., Fedotov I.V., Alkahtani M.H.A., Alajlan A., Blakley S., Rezaee M., Lyamkina A., Palyanov Y.N., Borzdov Y.M., Yang Y.P., Zheltikov A., Hemmer P., Akimov A.V.
Заглавие: Germanium-Vacancy Color Center in Diamond as a Temperature Sensor
Библ. ссылка: Fan J.W., Cojocaru I., Becker J., Fedotov I.V., Alkahtani M.H.A., Alajlan A., Blakley S., Rezaee M., Lyamkina A., Palyanov Y.N., Borzdov Y.M., Yang Y.P., Zheltikov A., Hemmer P., Akimov A.V. Germanium-Vacancy Color Center in Diamond as a Temperature Sensor // ACS PHOTONICS. - 2018. - Vol.5. - Iss. 3. - P.765-770. - ISSN 2330-4022.
Внешние системы: DOI: 10.1021/acsphotonics.7b01465; РИНЦ: 35500974; SCOPUS: 2-s2.0-85044332067; WoS: 000428356400015;
Реферат: eng: We present high-resolution, all-optical thermometry based on ensembles of germanium-vacancy (GeV) color center in diamond and implement this method of thermometry in the fiber-optic format. Due to the unique properties of diamond, an all-optical approach using this method opens a way to produce back-action-free temperature measurements with resolution below 0.1 K in a wide range of temperatures.
Ключевые слова: CELL; all-optical high-resolution thermometry; diamond; thermometry; color center; THERMOMETRY;
Издано: 2018
Физ. характеристика: с.765-770
Цитирование: 1. Patel, D.; Franklin, K. A. Temperature-Regulation of Plant Architecture. Plant Signaling Behav. 2009, 4 (7), 577-579, 10.4161/psb.4.7.8849 2. Seymour, R. S. Biophysics and Physiology of Temperature Regulation in Thermogenic Flowers. Biosci. Rep. 2001, 21 (2), 223-236, 10.1023/A:1013608627084 3. Warner, D. A.; Shine, R. The Adaptive Significance of Temperature-Dependent Sex Determination in a Reptile. Nature 2008, 451 (7178), 566-568, 10.1038/nature06519 4. Bahat, A.; Tur-Kaspa, I.; Gakamsky, A.; Giojalas, L. C.; Breitbart, H.; Eisenbach, M. Thermotaxis of Mammalian Sperm Cells: A Potential Navigation Mechanism in the Female Genital Tract. Nat. Med. 2003, 9 (2), 149-150, 10.1038/nm0203-149 5. Clark, D. G.; Brinkman, M.; Neville, S. D. Microcalorimetric Measurements of Heat Production in Brown Adipocytes from Control and Cafeteria-Fed Rats. Biochem. J. 1986, 235 (2), 337, 10.1042/bj2350337 6. Lowell, B. B.; Spiegelman, B. M. Towards a Molecular Understanding of Adaptive Thermogenesis. Nature 2000, 404 (6778), 652, 10.1038/35007527 7. Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-Scale Thermometry in a Living Cell. Nature 2013, 500 (7460), 54-58, 10.1038/nature12373 8. Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular Temperature Mapping with a Fluorescent Polymeric Thermometer and Fluorescence Lifetime Imaging Microscopy. Nat. Commun. 2012, 3, 705, 10.1038/ncomms1714 9. Wang, C.; Xu, R.; Tian, W.; Jiang, X.; Cui, Z.; Wang, M.; Sun, H.; Fang, K.; Gu, N. Determining Intracellular Temperature at Single-Cell Level by a Novel Thermocouple Method. Cell Res. 2011, 21 (10), 1517-1519, 10.1038/cr.2011.117 10. Fedotov, I. V.; Safronov, N. A.; Ermakova, Y. G.; Matlashov, M. E.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Belousov, V. V.; Zheltikov, A. M. Fiber-Optic Control and Thermometry of Single-Cell Thermosensation Logic. Sci. Rep. 2015, 5, 15737, 10.1038/srep15737 11. Wang, H.; Yang, A.; Sui, C. Luminescent High Temperature Sensor Based on the CdSe/ZnS Quantum Dot Thin Film. Optoelectron. Lett. 2013, 9 (6), 421-424, 10.1007/s11801-013-3151-y 12. Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11, 10.1038/nnano.2011.209 13. Chang, B.-M.; Lin, H.-H.; Su, L.-J.; Lin, W.-D.; Lin, R.-J.; Tzeng, Y.-K.; Lee, R. T.; Lee, Y. C.; Yu, A. L.; Chang, H.-C. Highly Fluorescent Nanodiamonds Protein-Functionalized for Cell Labeling and Targeting. Adv. Funct. Mater. 2013, 23 (46), 5737-5745, 10.1002/adfm.201301075 14. Hsu, T.-C.; Liu, K.-K.; Chang, H.-C.; Hwang, E.; Chao, J.-I. Labeling of Neuronal Differentiation and Neuron Cells with Biocompatible Fluorescent Nanodiamonds. Sci. Rep. 2015, 4, S336-S344, 10.1038/srep05004 15. Krüger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface Functionalisation of Detonation Diamond Suitable for Biological Applications. J. Mater. Chem. 2006, 16 (24), 2322-2328, 10.1039/B601325B 16. Say, J. M.; van Vreden, C.; Reilly, D. J.; Brown, L. J.; Rabeau, J. R.; King, N. J. C. Luminescent Nanodiamonds for Biomedical Applications. Biophys. Rev. 2011, 3 (4), 171-184, 10.1007/s12551-011-0056-5 17. de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects. Chem. Soc. Rev. 2005, 34 (2), 164-178, 10.1039/B411438H 18. Kappe, C. O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH, 2012. 19. Nguyen, C. T.; Evans, R. E.; Sipahigil, A.; Bhaskar, M. K.; Sukachev, D. D.; Agafonov, V. N.; Davydov, V. A.; Kulikova, L. F.; Jelezko, F.; Lukin, M. D. All-Optical Nanoscale Thermometry with Silicon-Vacancy Centers in Diamond. arXiv:1708.05419 [quant-ph] 2017, na 20. Bhaskar, M. K.; Sukachev, D. D.; Sipahigil, A.; Evans, R. E.; Burek, M. J.; Nguyen, C. T.; Rogers, L. J.; Siyushev, P.; Metsch, M. H.; Park, H.; Jelezko, F.; Lončar, M.; Lukin, M. D. Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. Phys. Rev. Lett. 2017, 118 (22), 223603, 10.1103/PhysRevLett.118.223603 21. Smith, A. M.; Mancini, M. C.; Nie, S. Second Window for in Vivo Imaging. Nat. Nanotechnol. 2009, 4 (11), 710-711, 10.1038/nnano.2009.326 22. Weissleder, R. A Clearer Vision for in Vivo Imaging. Nat. Biotechnol. 2001, 19 (4), 316-317, 10.1038/86684 23. Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K. D.; Rogers, L. J.; Naydenov, B.; Jelezko, F.; Yamasaki, S.; Nagamachi, S.; Inubushi, T.; Mizuochi, N.; Hatano, M. Germanium-Vacancy Single Color Centers in Diamond. Sci. Rep. 2015, 5, 12882, 10.1038/srep12882 24. Palyanov, Y. N.; Kupriyanov, I. N.; Borzdov, Y. M.; Surovtsev, N. V. Germanium: A New Catalyst for Diamond Synthesis and a New Optically Active Impurity in Diamond. Sci. Rep. 2015, 5 (1), 14789, 10.1038/srep14789 25. Palyanov, Y. N.; Kupriyanov, I. N.; Borzdov, Y. M.; Khokhryakov, A. F.; Surovtsev, N. V. High-Pressure Synthesis and Characterization of Ge-Doped Single Crystal Diamond. Cryst. Growth Des. 2016, 16 (6), 3510-3518, 10.1021/acs.cgd.6b00481 26. Jahnke, K. D.; Sipahigil, A.; Binder, J. M.; Doherty, M. W.; Metsch, M.; Rogers, L. J.; Manson, N. B.; Lukin, M. D.; Jelezko, F. Electron-Phonon Processes of the Silicon-Vacancy Centre in Diamond. New J. Phys. 2015, 17 (4), 43011, 10.1088/1367-2630/17/4/043011 27. Lagomarsino, S.; Gorelli, F.; Santoro, M.; Fabbri, N.; Hajeb, A.; Sciortino, S.; Palla, L.; Czelusniak, C.; Massi, M.; Taccetti, F.; Giuntini, L.; Gelli, N.; Fedyanin, D. Y.; Cataliotti, F. S.; Toninelli, C.; Agio, M. Robust Luminescence of the Silicon-Vacancy Center in Diamond at High Temperatures. AIP Adv. 2015, 5 (12), 127117, 10.1063/1.4938256 28. Fedotov, I. V.; Doronina-Amitonova, L. V.; Voronin, a. a.; Levchenko, a. O.; Zibrov, S. A.; Sidorov-Biryukov, D. a.; Fedotov, a. B.; Velichansky, V. L.; Zheltikov, a. M. Electron Spin Manipulation and Readout through an Optical Fiber. Sci. Rep. 2015, 4, 5362, 10.1038/srep05362 29. Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Safronov, N. A.; Blakley, S.; Levchenko, A. O.; Zibrov, S. A.; Fedotov, A. B.; Kilin, S. Y.; Scully, M. O.; Velichansky, V. L.; Zheltikov, A. M. Fiber-Optic Magnetic-Field Imaging. Opt. Lett. 2014, 39 (24), 6954, 10.1364/OL.39.006954