Инд. авторы: Palyanov Y.N.
Заглавие: The Many Facets of Diamond Crystals
Библ. ссылка: Palyanov Y.N. The Many Facets of Diamond Crystals // CRYSTALS. - 2018. - Vol.8. - Iss. 2. - Art.72. - ISSN 2073-4352.
Внешние системы: DOI: 10.3390/cryst8020072; РИНЦ: 35509653; SCOPUS: 2-s2.0-85041522129; WoS: 000427515800023;
Реферат: eng: This special issue is intended to serve as a multidisciplinary forum covering broad aspects of the science, technology, and application of synthetic and natural diamonds. This special issue contains 12 papers, which highlight recent investigations and developments in diamond research related to the diverse problems of natural diamond genesis, diamond synthesis and growth using CVD and HPHT techniques, and the use of diamond in both traditional applications, such as mechanical machining of materials, and the new recently emerged areas, such as quantum technologies. The results presented in the contributions collected in this special issue clearly demonstrate that diamond occupies a very special place in modern science and technology. After decades of research, this structurally very simple material still poses many intriguing scientific questions and technological challenges. It seems undoubted that diamond will remain the center of attraction for many researchers for many years to come.
Ключевые слова: CARBON; PHOTON; GERMANIUM; TEMPERATURE; SPINS; CRYSTALLIZATION; MANTLE; HIGH-PRESSURE; structural defects; carbon isotopes; color centers; defects and impurities; chemical vapor deposition; high pressure high temperature; diamond; crystal morphology; BEAMS;
Издано: 2018
Физ. характеристика: 72
Цитирование: 1. Sobolev, N.V. The Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle; American Geophysics Union: Washington, DC, USA, 1977. 2. Meyer, H.O.A. Inclusions in diamond. In Mantle Xenoliths; Nixon, H.P., Ed.; John Wiley and Sons: New York, NY, USA, 1987; pp. 501-523. 3. Harris, J.W. Diamond geology. In The Properties of Natural and Synthetic Diamond; Field, J.E., Ed.; Academic Press: London, UK, 1992; pp. 345-389. 4. Haggerty, S.E. A diamond trilogy: Superplumes, supercontinents, and supernovae. Science 1995, 285, 851-860. 5. Richardson, S.H.; Gurney, J.J.; Erlank, A.J.; Harris, J.W. Origin of diamonds in old enriched mantle. Nature 1984, 310, 198-202. 6. Agrosì, G.; Tempesta, G.; Della Ventura, G.; Cestelli Guidi, M.; Hutchison, M.; Nimis, P.; Nestola, F. Non-Destructive In Situ Study of Plastic Deformations in Diamonds: X-ray Diffraction Topography and µFTIR Mapping of Two Super Deep Diamond Crystals from São Luiz (Juina, Brazil). Crystals 2017, 7, 233. 7. Kaminsky, F.V.; Khachatryan, G.K.; Andreazza, P.; Araujo, D.P.; Griffin, W.L. Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 2009, 112, 833-842. 8. Stachel, T.; Brey, G.P.; Harris, J.W. Kankan diamonds (Guinea) I: From the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 2000, 140, 1-15. 9. Kaminsky, F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127-147. 10. Ragozin, A.; Zedgenizov, D.; Kuper, K.; Palyanov, Y. Specific Internal Structure of Diamonds from Zarnitsa Kimberlite Pipe. Crystals 2017, 7, 133. 11. Ragozin, A.; Zedgenizov, D.; Kuper, K.; Kalinina, V.; Zemnukhov, A. The Internal Structure of Yellow Cuboid Diamonds from Alluvial Placers of the Northeastern Siberian Platform. Crystals 2017, 7, 238. 12. Cartigny, P.; Palot, M.; Thomassot, E.; Harris, J.W. Diamond formation: A stable isotope perspective. Ann. Rev. Earth Planet. Sci. 2014, 42, 699-732. 13. Shirey, S.B.; Cartigny, P.; Frost, D.G.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.;Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355-421. 14. Reutsky, V.N.; Kowalski, P.M.; Palyanov, Y.N.; EIMF; Wiedenbeck, M. Experimental and Theoretical Evidence for Surface-Induced Carbon and Nitrogen Fractionation during Diamond Crystallization at High Temperatures and High Pressures. Crystals 2017, 7, 190. 15. Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408-20413. 16. Palyanov, Y.N.; Shatsky, V.S.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Crystallization of Metamorphic Diamond: An Experimental Modeling. Dokl. Earth Sci. 2001, 381, 935. 17. Bataleva, Y.V.; Palyanov, Y.N.; Borzdov, Y.M.; Bayukov, O.A.; Sobolev, N.V. Conditions for diamond and graphite formation from iron carbide at the P-T parameters of lithospheric mantle. Russ. Geol. Geophys. 2016, 57, 176-189. 18. Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196-210. 19. Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorf, J.R. Man-made diamonds. Nature 1955, 176, 51-55. 20. Bovenkerk, H.P.; Bundy, F.P.; Hall, H.T.; Strong, H.M.;Wentorf, J.R. Preparation of diamond. Nature 1959, 184, 1094-1098. 21. Wrachtrup, J.; Jelezko, F.J. Processing quantum information in diamond. J. Phys. Condens. Matter 2006, 18, S807-S824. 22. Weber, J.R.; Koehl,W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; Van deWalle, C.G.; Awschalom, D.D. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513-8518. 23. Prawer, S.; Aharonovich, I. (Eds.) Quantum Information Processing with Diamond; Woodhead Publishing:Cambridge, UK, 2014; 330p. 24. Dolde, F.; Fedder, H.; Doherty, M.W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.;Wolf, T.; Reinhard, F.; Hollenberg, L.C.L.; Jelezko, F.; et al. Electric-field sensing using single diamond spins. Nat. Phys. 2011, 7, 459-463. 25. Rondin, L.; Tetienne, J.-P.; Hingant, T.; Roch, J.-F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. 26. Schietinger, S.; Barth, M.; Aichele, T.; Benson, O. Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature. Nano Lett. 2009, 9, 1694-1698. 27. Barnard, A.S. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 2009, 134, 1751-1764. 28. Mohan, N.; Chen, C.S.; Hsieh, H.H.;Wu, Y.C.; Chang, H.C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692-3699. 29. Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682-686. 30. Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648-651. 31. Bernardi, E.; Nelz, R.; Sonusen, S.; Neu, E. Nanoscale Sensing Using Point Defects in Single-Crystal Diamond:Recent Progress on Nitrogen Vacancy Center-Based Sensors. Crystals 2017, 7, 124. 32. Pezzagna, S.; Rogalla, D.; Wildanger, D.; Meijer, J.; Zaitsev, A. Creation and nature of optical centres in diamond for single-photon emission-Overview and critical remarks. New J. Phys. 2011, 13, 035024. 33. Müller, T.; Hepp, C.; Pingault, B.; Neu, E.; Gsell, S.; Schreck, M.; Sternschulte, H.; Steinmüller-Nethl, D.; Becher, C.; Atatüre, M. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 2014, 5, 3328. 34. Green, B.L.; Mottishaw, S.; Breeze, B.G.; Edmonds, A.M.; D’Haenens-Johansson, U.F.S.; Doherty, M.W.; Williams, S.D.; Twitchen, D.J.; Newton, M.E. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes. Phys. Rev. Lett. 2017, 119, 096402. 35. Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K.D.; Rogers, L.J.; Naydenov, B.; et al. Germanium-Vacancy Single Color Centers in Diamond. Sci. Rep. 2015, 5, 12882. 36. Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Surovtsev, N.V. Germanium: A new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 2015, 5, 14789. 37. Siyushev, P.; Metsch, M.H.; Ijaz, A.; Binder, J.M.; Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Nguyen, C.T.; Lukin, M.D.; et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 2017, 96, 081201. 38. Iwasaki, T.; Miyamoto, Y.; Taniguchi, T.; Siyushev, P.; Metsch, M.H.; Jelezko, F.; Hatano, M. Tin-Vacancy Quantum Emitters in Diamond. Phys. Rev. Lett. 2017, 119, 253601. 39. Tchernij, S.D.; Herzig, T.; Forneris, J.; Kupper, J.; Pezzagna, S.; Traina, P.; Moreva, E.; Degiovanni, I.P.; Brida, G.; Skukan, N.; et al. Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation. ACS Photonics 2017, 4, 2580-2586. 40. Orwa, J.O.; Greentree, A.D.; Aharonovich, I.; Alves, A.D.C.; Van Donkelaar, J.; Stacey, A.; Prawer, S. Fabrication of single optical centres in diamond-A review. J. Lumin. 2010, 130, 1646-1654. 41. Aharonovich, I.; Castelletto, S.; Johnson, B.C.; McCallum, J.C.; Prawer, S. Engineering chromium-related single photon emitters in single crystal diamonds. New J. Phys. 2011, 13, 045015. 42. Magyar, A.; Hu, W.; Shanley, T.; Flatté, M.E.; Hu, E.; Aharonovich, I. Synthesis of luminescent europium defects in diamond. Nat. Commun. 2014, 5, 3523. 43. Nadolinny, V.; Komarovskikh, A.; Palyanov, Y. Incorporation of Large Impurity Atoms into the Diamond Crystal Lattice: EPR of Split-Vacancy Defects in Diamond. Crystals 2017, 7, 237. 44. Palyanov, Y.; Kupriyanov, I.; Borzdov, Y.; Nechaev, D.; Bataleva, Y. HPHT Diamond Crystallization in the Mg-Si-C System: Effect of Mg/Si Composition. Crystals 2017, 7, 119. 45. Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F.; Nechaev, D.V. Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 2015, 17, 4928-4936. 46. Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Bataleva, Y.V. High-pressure synthesis and characterization of diamond from an Mg-Si-C system. CrystEngComm 2015, 17, 7323-7331. 47. Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Surovtsev, N.V. High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 2016, 16, 3510-3518. 48. Khokhryakov, A.F.; Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. J. Cryst. Growth 2015, 426, 276-282. 49. Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Borzdov, Y.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 2017, 19, 4459-4475. 50. Tallaire, A.; Achard, J.; Silva, F.; Brinza, O.; Gicquel, A. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus Phys. 2013, 14, 169-184. 51. Martineau, P.M.; Gaukroger, M.P.; Guy, K.B.; Lawson, S.C.; Twitchen, D.J.; Friel, I.; Hansen, J.O.; Summerton, G.C.; Addison, T.P.G.; Burns, R. High crystalline quality single crystal chemical vapour deposition diamond. J. Phys. Condens. Matter 2009, 21, 364205. 52. Zytkiewicz, Z.R. Epitaxial Lateral Overgrowth of Semiconductors. In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley,M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; p. 999. 53. Tallaire, A.; Brinza, O.; Mille, V.;William, L.; Achard, J. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv. Mater. 2017, 29, 1604823. 54. Li, F.; Zhang, J.;Wang, X.; Zhang, M.;Wang, H. Fabrication of Low Dislocation Density, Single-Crystalline Diamond via Two-Step Epitaxial Lateral Overgrowth. Crystals 2017, 7, 114. 55. Ashkinazi, E.E.; Khmelnitskii, R.A.; Sedov, V.S.; Khomich, A.A.; Khomich, A.V.; Ralchenko, V.G. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures. Crystals 2017, 7, 166. 56. Surovtsev, N.V.; Kupriyanov, I.N. Effect of Nitrogen Impurities on the Raman Line Width in Diamond, Revisited. Crystals 2017, 7, 239. 57. Ravichandran, R.; Binukumar, J.P.; Amri, I.A.; Davis, C.A. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J. Appl. Clin. Med. Phys. 2016, 17, 291-303. 58. Moignier, C.; Tromson, D.; de Marzi, L.; Marsolat, F.; Hernández, J.C.G.; Agelou, M.; Pomorski, M.; Woo, R.; Bourbotte, J.-M.; Moignau, F.; et al. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams. Phys. Med. Biol. 2017, 62, 5417. 59. Trischuk,W. (On behalf of the RD42 Collaboration). Diamond Particle Detectors for High Energy Physics. Nucl. Part. Phys. Proc. 2016, 273-275, 1023-1028. 60. Prins, J.F. Ion implantation of diamond for electronic applications. Semicond. Sci. Technol. 2003, 18, S27. 61. Belousov, Y.M. Evolution in Time of Radiation Defects Induced by Negative Pions and Muons in Crystals with a Diamond Structure. Crystals 2017, 7, 174. 62. Casstevens, J.M. Diamond turning of steel in carbon-saturated atmospheres. Precis. Eng. 1983, 5, 9-15. 63. Evans, C. Cryogenic diamond turning of stainless steel. CIRP Ann. Manuf. Technol. 1991, 40, 571-575. 64. Shamoto, E.; Suzuki, N. Ultrasonic vibration diamond cutting and ultrasonic elliptical vibration cutting. Compr. Mater. Process. 2014, 11, 405-454. 65. Zou, L.; Huang, Y.; Zhou, M.; Xiao, G. Thermochemical Wear of Single Crystal Diamond Catalyzed by Ferrous Materials at Elevated Temperature. Crystals 2017, 7, 116.