Инд. авторы: Maslov A.V., Shevchenko V.P., Bobrov V.A., Belogub E.V., Ershova V.B., Vereshchagin O.S., Khvorov P.V.
Заглавие: Mineralogical-Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions
Библ. ссылка: Maslov A.V., Shevchenko V.P., Bobrov V.A., Belogub E.V., Ershova V.B., Vereshchagin O.S., Khvorov P.V. Mineralogical-Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions // Lithology and Mineral Resources. - 2018. - Vol.53. - Iss. 2. - P.110-129. - ISSN 0024-4902. - EISSN 1608-3229.
Внешние системы: DOI: 10.1134/S0024490218020037; РИНЦ: 35483922; SCOPUS: 2-s2.0-85043974758; WoS: 000427494000002;
Реферат: eng: The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from degrees 20 to degrees 50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)(N)-Eu/Eu*, (La/Yb)(N)-(Eu/Sm)(N), and (La/Yb)(N)-Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co-La, Si/Al-Ce, and Si/Al-Sr diagrams.
Ключевые слова: NORTH-ATLANTIC; BOTTOM SEDIMENTS; TRANSPORT PATHWAYS; LAPTEV SEA; CLAY-MINERALS; SEA-ICE; SURFACE SEDIMENTS; RARE-EARTH-ELEMENTS; CHEMICAL-COMPOSITION; FRAM STRAIT;
Издано: 2018
Физ. характеристика: с.110-129
Цитирование: 1. Andrews, J.T. and Eberl, D.D., Quantitative mineralogy of surface sediments on the Iceland shelf, and application to down-core studies of Holocene ice-rafted sediments, J. Sediment. Res., 2007, vol. 77, pp. 469–479. 2. Andrews, J.T. and Eberl, D.D., Determination of sediment provenance by unmixing the mineralogy of source-area sediments: the “SedUnMix” program, Mar. Geol., 2012, vol. 291, pp. 24–33. 3. Andrews, J.T. and Hardardottir, J., A comparison of Holocene sediment-and paleomagnetic characteristics from the margins of Iceland and East Greenland, Jokull, 2009, vol. 59, pp. 51–66. 4. Arctic '98: The Expedition ARK-XIV/1a of RV “Polarstern” in 1998, Jokat, W., Ed., in Berichte Polarforsch., 1999, vol. 308. 5. Asadulin, En.E., Miroshnikov, A.Yu., and Velichkin, V.I., Geochemical Signature of Bottom Sediments in the Mixing Zones of Ob and Yenisei Waters with Kara Sea Water, Geochem. Int. 2013, no. 12, pp. 1005–1018. 6. Asadulin, En.E., Miroshnikov, A.Yu., Usacheva, A.A., and Velichkin, V.I., Geochemical recognition of terrigenous material from the Ob and Yenisei rivers in bottom sediments of the eastern part of the Kara Sea, Dokl. Earth. Sci., 2015, vol. 461, no. 2, pp. 270–272. 7. Bayon, G., Toucanne, S., Skonieczny, C., et al., Rare earth elements and neodymium isotopes in world river sediments revisited, Geochim. Cosmochim. Acta, 2015, vol. 170, pp. 17–38. 8. Bobrov, V.A., Granina, L.Z., Kolmogorov, Yu.P., and Melgunov, M.S., Minor elements in aeolian and riverine suspended particles in Baikal region, Nucl. Instr. Methods Phys. Res., 2001, vol. 470, pp. 431–436. 9. Bobrov, V.A., Khodzher, T.V., Granina, L.Z., et al., Rare earth elements in the eolian and riverine suspended material in the Lake Baikal region, Geol. Geofiz., 2001, vol. 42, pp. 267–277. 10. Colony, R.L., Rigor, I., and Runciman-Moore, K., A summary of observed ice motion and analyzed atmospheric pressure in the Arctic basin, 1979–1990, in Appl. Physics Lab., Seattle: Univ. Wash., 1991, pp. 13–91. 11. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37. 12. Dalrymple, R.W. and Maass, O.C., Clay mineralogy of Late Cenozoic sediments in the CESAR cores, Alpha Ridge, central Arctic Ocean, Can. J. Earth Sci., 1987, vol. 24, pp. 1562–1569. 13. Darby, D.A., Kaolinite and other clay minerals in Arctic Ocean sediments, J. Sediment. Petrol., 1975, vol. 45, pp. 272–279. 14. Darby, D.A., Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns, J. Geophys. Res.: Oceans, 2003, vol. 108, no. C8. 15. Darby, D.A., Naidu, A.S., Mowatt, T.C., and Jones, G., Sediment composition and sedimentary processes in the Arctic Ocean, in The Arctic Seas—Climatology, Oceanogaphy, Geology and Biology, Herman, Y., Ed., New York: Van Nostrand Reinhold Co., 1989, pp. 657–720. 16. Darby, D.A., Myers, W.B., Jakobsson, M., and Rigor, I., Modern dirty sea ice characteristics and sources: the role of anchor ice, J. Geophys. Res., 2011, vol. 116. C09008. https://doi 10.1029/2010JC006675 17. Dethleff, D. and Kuhlmann, G., Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source areas, Polar Res., 2010, vol. 29, pp. 265–282. 18. Dethleff, D., Nurnberg, D., Reimnitz, E., et al., East Siberian Arctic Region Expedition'92: the Laptev Sea—its significance for Arctic Sea-ice formation and transpolar sediment flux, Ber. Polarforsch., 1993, vol. 120, pp. 3–44. 19. Dubinin, A.V., Geokhimiya redkozemel’nykh elementov v okeane (Geochemistry of Rare Earth Elements in the Ocean), Moscow: Nauka, 2006. 20. Eicken, H., Reimnitz, E., Alexandrov, V., et al., Sea-ice processes in the Laptev Sea and their importance for sediment export, Contin. Shelf Res., 1997, vol. 17, pp. 205–233. 21. Elverhoi, A., Pfirman, S., Solheim, A., and Larssen, B.B., Glaciomarine sedimentation in epicontinental seas exemplified by the northern Barents Sea, Mar. Geol., 1989, vol. 85, pp. 225–250. 22. Emeis, K., Particulate suspended matter in major world rivers-II: results on the rivers Indus, Waikato, Nile, St. Lawrence, Yangtze, Parana, Orinoco, Caroni and Mackenzie, Mitt. Geol.-Palaont. Inst., Univ. Hamburg, 1985, no. 58, pp. 593–617. 23. Farmer, G.L., Licht, K., Swope, R.J., and Andrews, J.T., Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica, Earth Planet. Sci. Lett., 2006, vol. 249, pp. 90–107. 24. Gaillardet, J., Dupre, B., and Allegre, C.J., Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 23/24, pp. 4037–4052. 25. Gel’man, E.M. and Starobina, I.Z., Fotometricheskie metody opredeleniya porodoobrazuyushchikh elementov v rudakh, gornykh porodakh i mineralakh (Photometric Methods for the Determination of Major Elements in Ores, Rocks, and Minerals), Moscow: GEOKhI AN SSSR, 1976. 26. Gorbunova, Z.N., Clay-size minerals in the Kara Sea sediments, Oceanology, 1997, vol. 37, no. 5, pp. 709–712. 27. Gordeev, V.V., Rachold, V., and Vlasova, I.E., Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh River, the main tributary of the Ob River, Siberia, Appl. Geochem., 2004, vol. 19, pp. 593–610. 28. Grousset, F.E., Cortijo, E., Huon, S., et al., Zooming in on Heinrich layers, Paleoceanography, 2001, vol. 16, pp. 240–259. 29. Hemming, S.R., Vorren, T.O., and Kleman, J., Provinciality of ice rafting in the North Atlantic: Application of 40Ar/39Ar dating of individual ice rafted hornblende grains, Quat. Int., 2002, vol. 95–96, pp. 75–85. 30. Herman, Y., The Arctic Seas–Climatology, Oceanography, Geology, and Biology, New York: Van Nostrand Reinhold, 1989. 31. Kalinenko, V.V., Shelekhova, E.S., and Wahsner, M., Clay minerals in the surface sediments of the East Siberian and Laptev Sea, in Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin, Stein, R., Ivanov, G., Levitan, M., and Fahl, K., Eds., Rep. Polar Res. 1996, vol. 212, pp. 43–50. 32. Kassens, H. and Thiede, J., Climatological significance of Arctic Sea ice at present and in the past, in Russian-German Cooperation in the Siberian shelf seas: geo-system Laptev-Sea, Kassens, H., Eds., Ber. Polarforsch, 1994, vol. 144, pp. 81–85. 33. Khim, B.K., Two modes of clay-mineral dispersal pathways on the continental shelves of the East Siberian Sea and western Chukchi Sea, Geosci. J., 2003, vol. 7, pp. 253–262. 34. Kolatschek, J., Eicken, H., Alexandrov, V.Yu., and Kreyscher, M., The sea ice cover of the Arctic Ocean and the Eurasian marginal seas: a brief overview of present day patterns and variability, in Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin, Stein, R., Ivanov, G.I., Levitan, M.A., and Fahl, K., Eds., Ber. Polarforsch, 1996, vol. 212, pp. 2–19. 35. Konta, J., Mineralogy and chemical maturity of suspended matter in major rivers sampled under the SCOPE/UNEP project, Mitt. Geol.-Palaont. Inst., Univ. Hamburg, 1985, no. 58, pp. 569–592. 36. Kontorovich, A.E., Forms of the migration of elements in rivers of the humid zone (based on materials from West Siberia and other regions), in Geokhimiya osadochnykh porod i rud (Geochemistry of Sedimentary Rocks and Ores), Moscow: Nauka, 1968, pp. 88–101. 37. Lein, A.Yu., Makkaveev, P.N., Savvichev, A.S., et al., Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011, Oceanology, 2013, vol. 53, no. 5, pp. 570–606. 38. Levitan, M.A., Lavrushin, Yu.A., and Stain, R., Ocherki istorii sedimentatsii v Severnom Ledovitom okeane i moryakh Subarktiki v techenie poslednikh 130 tys. let (History of Sedimentation in the Arctic Ocean and Subarctic Seas in the Last 130 ka), Moscow: GEOS, 2007. 39. Lisitzin, A.P., Ledovaya sedimentatsiya v Mirovom okeane (Ice Sedimentation in the World Ocean), Moscow: Nauka, 1994. 40. Lisitzin, A.P., Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past, Berlin: Springer, 2002. 41. Lisitzin, A.P., A new type of sedimentogenesis in the Arctic (marine ice): New approaches to the study of processes, Geol. Geofiz., 2010, vol. 51, no. 1, pp. 18–60. 42. Lisitzin, A.P. and Shevchenko, V.P., Glaciomarine sedimentation, in Encyclopedia of Marine Geosciences, Harff, J., Meschede, M., Petersen, S., and Thiede, J., Eds., Dordrecht: Springer, 2016, pp. 288–294. 43. Lisitzin, A.P., Gurvich, E.G., Lukashin, V.N., et al., Geokhimiya elementov-gidrolizatov (Geochemistry of Hydrolyzate Elements), Moscow: Nauka, 1980. 44. Logvinenko, N.V. and Ogorodnikov, V.I., Recent bottom sediments on the Chukchi Sea shelf, Okeanologiya, 1980, vol. 20, no. 4, pp. 681–687. 45. Martin, J.M. and Meybeck, M., Chemical composition of river-borne particulates, Mar. Chem., 1979, vol. 7, no. 2, pp. 193–206. 46. McManus, D.A., Venkatarathnam, K., Hopkins, D.M., and Nelson, H.C., Yukon River sediment on the northernmost Bering Sea shelf, J. Sediment. Petrol., 1974, vol. 44, pp. 1052–1060. 47. Moros, M., McManus, J., Rasmussen, T., et al., Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: proxies for ice rafting in the northern North Atlantic?, Earth Planet. Sci. Lett., 2004, vol. 218, pp. 389–401. 48. Morozov, N.P., Baturin, G.N., Gordeev, V.V., and Gurvich, E.G., The composition of suspended material and sediments at estuaries of the northern Dvina, Mezen, Pechora, and Ob rivers, Gidrokhim. Mater., 1974, vol. 60, pp. 60–73. 49. Naidu, A.S. and Mowatt, T.C., Sources and dispersal patterns of clay minerals in surface sediments from the continental shelf areas off Alaska, GSA Bull., 1983, vol. 94, pp. 841–854. 50. Naugler, F.P., Recent sediments of the East Siberian Sea, M.S. Thesis, Univ. Wash. DC, 1967. 51. Nürnberg, D., Wollenburg, I., Dethleff, D., et al., Sediments in Arctic Sea ice: Implications for entrainment, transport and release, Mar. Geol., 1994, vol. 119, pp. 185–214. 52. Nürnberg, D., Levitan, M.A., Pavlidis, J.A., and Shelekhova, E.S., Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas, Geol. Rundsch, 1995, vol. 84, pp. 665–682. 53. Pfirman, S., Lange, M.A., Wollenburg, I., and Schlosser, P., Sea ice characteristics and the role of sediment inclusions in deep-sea deposition: Arctic-Antarctic comparisons, in Geological History of the Polar Oceans: Arctic versus Antarctic, Bleil, U. and Thiede, J., Eds., Dordrecht: Kluwer Acad. Publ., 1990, pp. 187–211. 54. Pfirman, S.L., Eicken, H., Bauch, D., and Weeks, W.F., The potential transport of pollutants by Arctic Sea ice, Sci. Tot. Envir., 1995, vol. 159, pp. 129–146. 55. Pfirman, S.L., Colony, R., Nürnberg, D., et al., Reconstructing the origin and trajectory of drifting Arctic Sea ice, J. Geophys. Res., 1997, vol. 102, pp. 12575–12586. 56. Pirrung, M., Fütterer, D., Grobe, H., et al., Magnetic susceptibility and ice-rafted debris in surface sediments of the Nordic Seas: Implications for Isotope Stage 3 oscillations, Geo-Mar. Lett., 2002, vol. 22, pp. 1–11. 57. Rachold, V., Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean, in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Berlin: Springer, 1999, pp. 1999–222. 58. Rachold, V., Alabyan, A., Hubberten, H.-W., et al., Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River, Polar Res., 1996, vol. 15, no. 2, pp. 183–196. 59. Reimnitz, E., Dethleff, D., and Nurnberg, D., Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea, Mar. Geol., 1994, vol. 119, pp. 215–225. 60. Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (X-ray Diffraction Analysis of the Major Types of Rock-Forming Minerals), Leningrad: Nedra, 1983, p. 360. 61. Savenko, V.S., Khimicheskii sostav vzveshennykh nanosov rek Mira (The Chemical Composition of Suspended Material in Rivers of the World), Moscow: GEOS, 2006. 62. Savenko, V.S., Pokrovskii, O.S., Dyupre, B., and Baturin, G.N., Chemical composition of suspended material in large rivers of Russia and adjacent countries, Dokl. Earth Sci., 2004, vol. 398, no. 1, pp. 938–942. 63. Scientific Cruise Report of the Arctic Expedition ARK-XX/3 of RV “Polarstern” in 2004: Fram Strait, Yermak Plateau and East Greenland Continental Margin, Stein, R., Ed., Berichte Polar Meeresforsch., 2005, vol. 517. 64. Serova, V.V. and Gorbunova, Z.N., Mineral composition of soils, aerosols, suspended matter, and bottom sediments of the Lena River estuary and the Laptev Sea, Oceanology, 1997, vol. 37, no. 1, pp. 121–125. 65. Shevchenko, V.P., Lisitsyn, A.P., Polyakova, E.I., et al., Distribution and composition of sedimentary material in the snow cover of the Arctic drift ice (Fram Strait), Dokl. Earth Sci., 2002, vol. 383, no. 3, pp. 278–281. 66. Shevchenko, V.P., Maslov, A.V., Lisitzin, A.P., et al., Elemental composition of the sedimentary material in drifting ice of the Arctic, in Geografiya polyarnykh regionov. Ser, voprosy geografii (Geography of Polar Regions: Ser. Issues of Geography), Kotlyakov, V.M., Ed., Moscow: Dom Kodeks, 2016, pp. 390–413. 67. Shevchenko, V.P., Maslov, A.V., Lisitzin, A.P., et al., Systematics of Cr, Co, and REE in the sedimentary material of drifting ices in the northern Beaufort Gyre, Litosfera, 2017a, no. 3, pp. 59–70. 68. Shevchenko, V.P., Maslov, A.V., and Stein, R., Distribution of some rare and trace elements in ice-rafted sediments in the Yermak Plateau area, Arctic Ocean, Oceanology, 2017b, vol. 57, no. 6, pp. 855–863. 69. Silverberg, N., Sedimentology of the surface sediments of the East Siberian and Laptev seas, Ph.D. Thesis, Univ. Wash., DC, 1972. 70. Stein, R., Grobe, H., and Wahsner, M., Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments, Mar. Geol., 1994, vol. 119, pp. 269–285. 71. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985. 72. Translated under the title Kontinental’naya kora, ee sostav i evolyutsiya, Moscow: Mir, 1988. 73. Verplanck, E.P., Farmer, G.L., Andrews, J., et al., Provenance of Quaternary glacial and glaciomarine sediments along the southeast Greenland margin, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 52–62. 74. Viscosi-Shirley, C., Siberian-Arctic shelf surface-sediments: Sources, transport pathways and processes, and diagenetic alteration, PhD Thesis, Oregon State Univ., 2001. 75. Viscosi-Shirley, C., Pisias, N., and Mammone, K., Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic’s Chukchi and Laptev shelves, Cont. Shelf Res., 2003, vol. 23, pp. 1201–1225. 76. Votyakov, S.L., Kiseleva, D.V., Shagalov, E.S., et al., Multielement analysis of geological samples by the ICP-MS method using ELAN 9000, in Ezhegodnik-2005 (Yearbook-2005), Yekaterinburg: IGG UrO RAN, 2006, pp. 425–430. 77. Wahsner, M., Muller, C., Stein, R., et al., Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways–a synthesis, Boreas, 1999, vol. 28, pp. 215–233. 78. Wollenburg, I., Sediment transport by Arctic Sea ice: the recent load of lithogenic and biogenic material, Ber. Polarforsch, 1993, vol. 127, pp. 93–159. 79. Zakharov, V.F., Morskie l’dy v klimaticheskoi sisteme (Marine Ice in the Climate System), St. Petersburg: Gidrometeoizdat, 1996.