Инд. авторы: Sonin V.M., Zhimulev E.I, Pomazanskiy B.S., Zemnuhov A.L., Chepurov A.A., Afanasiev V.P., Chepurov A.I.
Заглавие: Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400A degrees C
Библ. ссылка: Sonin V.M., Zhimulev E.I, Pomazanskiy B.S., Zemnuhov A.L., Chepurov A.A., Afanasiev V.P., Chepurov A.I. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400A degrees C // Geology of Ore Deposits. - 2018. - Vol.60. - Iss. 1. - P.82-92. - ISSN 1075-7015. - EISSN 1555-6476.
Внешние системы: DOI: 10.1134/S1075701518010051; РИНЦ: 35507753; SCOPUS: 2-s2.0-85043342407; WoS: 000427096900005;
Реферат: eng: An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P-T parameters (4 GPa, 1400A degrees D) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.
Ключевые слова: EARTHS MANTLE; AFRICAN DIAMONDS; FLUID COMPOSITION; MINERAL INCLUSIONS; YAKUTIAN KIMBERLITES; CORE FORMATION; FE-NI-S; P-T PARAMETERS; metal-sulfide melt; high temperature and pressure; morphology; diamond; HIGH-PRESSURE; SILICATE MELT;
Издано: 2018
Физ. характеристика: с.82-92
Цитирование: 1. Afanas’ev, V.P., Efimova, E.S., Zinchuk, N.N., and Koptil’, V.I. Atlas morfologii almazov Rossii (Atlas of Morphology of Russian Diamonds), Novosibirsk: SO RAN, NITs OIGGM, 2000. 2. Arima, M., Experimental study of growth and resorption of diamond in kimberlitic melts at high pressure and temperatures, Proceedings of the, 3rd NIRIM Intern. Symp. on Advanced Materials (ISAM'96), 1996, pp. 223–228. 3. Arima, M. and Kozai, Y., Diamond dissolution rates in kimberlitic melts at 1300–1500°C in the graphite stability field, Eur. J. Mineral., 2008, vol. 20, pp. 357–364. 4. Bagdassarov, N., Solferino, G., Golabek, G., and Schmidt, M., Centrifuge assisted percolation of Fe–S melts in partially molten peridotite: time constraints for planetary core formation, Earth Planet. Sci. Lett., 2009, vol. 288, pp. 84–95. 5. Bartoshinskii, Z.V. and Kvasnitsa, V.N., Kristallomorfologiya almaza iz kimberlitov (Crystalomorphology of Kimberlite Diamond), Kiev: Nauk. Dumka, 1991. 6. Beskrovanov V.V. Ontogeniya almaza (Diamond Ontogeny), Novosibirsk: Nauka, 2000. 7. Bogatyreva, G.P., Kruk, V.B., and Sokhina, L.A., Determination of diamond content in the diamond-bearing materials, Sintet. Almazy, 1974, no. 5, pp. 19–21. 8. Bulanova, G.P., The formation of diamond, J. Geochem. Explor., 1995, no. 53, pp. 1–23. 9. Bulanova, G.P., Spetsius, Z.V., and Leskova, N.V., Sul’fidy v almazakh i ksenolitakh iz kimberlitovykh trubok Yakutii (Sulfides in Diamonds and Xenliths from Yakutian Kimberlite Pipes), Novosibirsk: Nauka. 1990. 10. Bulanova, G.P., Griffin, W.L., Ryan, C.G., et al., Trace elements in sulfide inclusions from Yakutian diamonds, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 111–125. 11. Bulanova, G.P., Griffin, W.L., and Ryan, C.G., Nucleation environment of diamonds from Yakutian kimberlites, Mineral. Mag., 1998, vol. 62, pp. 409–419. 12. Campbell, A.J., Seagle, C.T., Heinz, D.L., et al., Partial melting in the iron-sulfur system at high pressure: a synchrotron X-ray diffraction study, Phys. Earth Planet. Inter., 2007, vol. 162, pp. 119–128. 13. Chabot, N.L., Campbell, A.J., McDonough, W.F., et al., The Fe–C system at 5 GPa and implications for earth’s core, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4146–4158. 14. Chepurov, A.I., Role of sulfide melt in natural diamond formation, Geol. Geofiz., 1988, no. 8, pp. 119–124. 15. Chepurov, A.I., Fedorov, I.I., and Sonin, V.M., Experimental studies of diamond formation at high PT-parameters: supplement to the model for natural diamond formation, Geol. Geofiz., 1998, vol. 39, no. 2, pp. 234–244. 16. Chepurov, A.I., Khokhriakov, A.F., Sonin, V.M., et al., The shape of diamond crystal dissolution in silicate melts under high pressure, Dokl. Akad. Nauk, 1985, vol. 285, no. 1, pp. 212–216. 17. Deines, P. and Harris, J.W., Sulfide inclusions chemistry and carbon isotopes of african diamonds, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3173–3188. 18. Efimova E.S., Sobolev N.V., and Pospelova, L.N., Sulfide inclusions in diamonds and specifics of their paragenesis, Zap. Ross. Mineral. O-va, 1983, vol. 112, no. 3, pp. 300–310. 19. Fedorov, I.I., Chepurov, A.I., Sonin, V.M., and Zhimulev, E.I., Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds, Geochem. Int., 2006, vol. 44, no. 10, pp. 1048–1052. 20. Fedortchouk, Y., Canil, D., and Semenets, E., Mechanism of diamond oxidation and their bearing on the fluid composition in kimberlitic magmas, Am. Mineral., 2007, vol. 92, pp. 1200–1212. 21. Frost, D.J. and McCammon, C.A., The redox state of the earth’s mantle, Annu. Rev. Earth Planet. Sci., 2008, vol. 36, pp. 389–420. 22. Garanin, V.K. and Kudryavtseva, G.P., Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites, Lithos, 1990, vol. 25, pp. 211–217. 23. Gorshkov, A.I., Yan Nan Bao, Bershov, L.V., et al., Inclusions of native metals and other minerals in diamond from Kimberlite Pipe 50, Liaoning, China, Geochem. Int.z, 1997, vol. 35, no. 8, 695–703. 24. Haggerty, S.E., Diamond genesis in a multiply constrained model, Nature, 1986, vol. 320, pp. 34–38. 25. Harris, J.W. and Gurney, J.J., Inclusions in diamond, The Properties of Diamond, Field J.E., Eds., Academ. Press, 1979, pp. 554–591. 26. Huang, H., Fei, Y., Cai, L., et al., Evidence for an oxygendepleted liquid outer core of the Earth, Nature, 2011, vol. 479, pp. 513–516. 27. Kadik, A.A., Solubility of hydrogen and carbon in reduced magmas of the early Earth’s mantle, Geochem. Int., 2006, vol. 44, no. 1, pp. 33–47. 28. Kaminsky, F.V. and Wirth, R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil, Can. Mineral., 2011, vol. 49, pp. 555–572. 29. Kennedy, C.S. and Kennedy, G.C., The equilibrium boundary between graphite and diamond, J. Geophys. Res., 1976, vol. 81, pp. 2467–2470. 30. Khokhryakov, A.F. and Pal’yanov, Yu.N., Morphology of diamond crystals dissolved in water-bearing silicate melts, Mineral. Zh., 1990, no. 1, pp. 14–23. 31. Khokhryakov, A.F. and Pal’yanov, Yu.N., The evolution of diamond morphology in the process of dissolution: experimental data, Am. Mineral., 2007, vol. 92, pp. 909–917. 32. Khokhryakov, A.F. and Pal’yanov, Yu.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts, Am. Mineral., 2010, vol. 95, pp. 1508–1514. 33. Kozai, Y. and Arima, M., Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420oC and 1 GPa with controlled oxygen partial pressure, Am. Mineral., 2005, vol. 90, pp. 1759–1766. 34. Kukharenko, A.A., Almazy Urala (Diamonds of the Urals), Moscow: Gosgeoltekhizdat, 1955. 35. Marx, P.C., Pyrrotine and the origin of terrestrial diamonds, Mineral. Mag., 1972, vol. 38, pp. 636–638. 36. Meyer, H.O.A., in Inclusions in diamond, Mantle Xenoliths, Nixon, P.H., Ed., Chichester: John Willy and Sons Ltd, 1987, pp. 501–533. 37. Mokievskii, V.A., Morfologiya kristallov: Metodicheskoe rukovodstvo (Morphology of Crystals: Methodical Reference Book), Leningrad: Nedra, 1983. 38. Orlov, Yu.L., Mineralogiya almaza (Diamond Mineralogy), Moscow: Nauka, 1984. 39. Poirier, J.P., Light elements in the earth’s outer core: a critical review, Phys. Earth Planet. Inter., 1994, vol. 85, pp. 319–337. 40. Pshenichnov, Yu.P., Vyyavlenie tonkoi struktury kristallov. Spravochnik (Detection of Fine Crystal Structure. Reference Book), Moscow: Metallurgiya, 1974. 41. Rohrbach, A., Ballhaus, C., Gola-Schindler, U., et al., Metal saturation in the upper mantle, Nature, 2007, vol. 449, pp. 456–458. 42. Sharp, W.E., Pyrrhotite: a common inclusion in the South African diamonds, Nature, 1966, vol. 211, no. (5047), pp. 402–403. 43. Sobolev, N.V., Glubinnye vklyucheniya v kimberlitakh i problema sostava verkhnei mantii (Deep-Seated Inclusions in Kimberlites and Problem of Upper Mantle Composition), Novosibirsk: Nauka, 1974. 44. Sobolev, N.V., Efimova, E.S., and Pospelova, L.N., Native iron in diamonds of Yakutia and its paragenesis, Geol. Geofiz., 1981, vol. 22, no. 12, pp. 25–29. 45. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., et al., Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P-T parameters, Geokhimiya, 1997, vol. 35, no. 4, pp. 451–455. 46. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., et al., Etching of diamond crystals in a dry silicate melt at high P-T parameters, Geochemi. Int., 2001, vol. 39, no. 3, pp. 268–274. 47. Sonin, V.M., Zhimulev, E.I., Chepurov, A.I., et al., Morphology of diamond crystals etched in a kimberlite melt at high PT parameters, Izv. Vyssh. Ucheb. Zaved., Geol. Razvedka, 2002a, no. 1, pp. 60–69. 48. Sonin, V.M., Zhimulev E.I., Afanas’ev, V.P., and Chepurov, A.I., Genetic aspects of diamond morphology, Geol. Ore Deposits, 2002b, vol. 44, no. 4, pp. 291–299. 49. Sonin, V.M., Zhimulev, E.I., Tomilenko, A.A., et al., Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability, Geol. Ore Deposits, 2004, vol. 46, no. 3, pp. 182–190. 50. Spetsius, Z.V. and Serenko, V.P., Sostav kontinental’noi verkhnei mantii i nizov kory pod sibirskoi platformoi (Composition of Continental Upper Mantle beneath Siberian Platform), Moscow: Nauka, 1990. 51. Stachel, T., Harris, J.W., and Brey, G.P., Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 34–47. 52. Stagno, V. and Frost, D.J., Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages, Earth Planet. Sci. Lett., 2010, vol. 300, pp. 72–84. 53. Steward, A.J., Schmidt, M.W., Van Westrenen, W., and Liebske, C., Mars: a new core-crystallization regime, Science, 2008, vol. 316, pp. 1323–1325. 54. Terasaki, H., Frost, D.J., Rubie, D.C., and Langenhorst, F., Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions, Phys. Earth Planet. Inter., 2007, vol. 161, pp. 170–176. 55. Terasaki, H., Frost, D.J., Rubie, D.C., and Langenhorst, F., Percolative core formation in planetesimals, Earth Planet. Sci. Lett., 2008, vol. 273, pp. 132–37. 56. Titkov, S.V., Gorshkov, A.I., Solodova, Yu.P., et al., Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data, Dokl. Earth Sci., 2006, vol. 410, pp. 1106–1108. 57. Tsuno, K. and Dasgupta, R., Fe–Ni–Cu–C–S phase relations at high pressures and temperatures—the role of sulfur in carbon storage and diamond stability at mid to deepupper mantle, Earth Planet. Sci. Lett., 2015, vol. 412, pp. 132–142. 58. Tsymbulov, L.B. and Tsemekhman, L.Sh., Solubility of carbon in sulfide melts of the system Fe–Ni–S, Russ. J. Appl. Chem., 2001, vol. 74, pp. 925–929. 59. Voitsekhovskii, V.N. and Mokievskii, V.A., Some problems of interaction of growth and dissolution of crystals, Zap. Ross. Mineral. O-va, 1965, vol. 94, no. 1, pp. 71–89. 60. Wade, J. and Wood, B.J., Core formation and oxidation state of the earth, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 78–95. 61. Walte, N., Becker, J., Bons, P., et al., Liquid-distribution and attainment of textural equilibrium in a partially-molten crystalline system with a high-dihedral-angle liquid phase, Earth Planet. Sci. Lett., 2007, vol. 261, pp. 517–532. 62. Walter, M.J., Kohn, S.C., Araujo, D., et al., Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions, Science, 2011, vol. 334, pp. 54–57. 63. Wood, B.J., Carbon in the core, Earth Planet. Sci. Lett., 1993, vol. 117, pp. 593–607. 64. Yoshino, T., Walter, M.J., and Katsura, T., Connectivity of molten fe alloy in peridotite based on in situ electrical conductivity measurements: implication for core formation in terrestrial planet, Earth Planet. Sci. Lett., 2004, vol. 222, pp. 625–643. 65. Zhimulev, E.I., Sonin, V.M., Fedorov, I.I., et al., Diamond stability with respect to oxidation in experiments with minerals from mantle xenoliths at high P-T parameters, Geochem. Int., 2004, vol. 42, no. 6, pp. 520–525. 66. Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F., et al., Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of diamond, Geochem. Int., 2012, vol. 50, no. 3, pp. 205–216. 67. Zhimulev, E.I., Chepurov, A.I., Sonin, V.M., and Pokhilenko, N.H., Migration of molten iron through an olivine matrix in the presence of carbon at high P–T parameters (experimental data), Dokl. Earth Sci., 2015, vol. 463, pp. 677–679. 68. Zhimulev, E.I., Sonin, V.M., Mironov, A.M., and Chepurov, A.I., Effect of sulfur concentration on diamond crystallization in the Fe–C–S system at 5.3–5.5 GPa and 1300–1370 degrees C, Geochem. Int., 2016, vol. 54, no. 5, pp. 415–422.