Инд. авторы: Bekker T.B., Solntsev V.P., Rashchenko S.V., Yelisseyev A.P., Davydov A.V., Kragzhda A.A, Kokh A.E., Kuznetsov A.B., Park S.
Заглавие: Nature of the Color of Borates with "Anti-Zeolite" Structure
Библ. ссылка: Bekker T.B., Solntsev V.P., Rashchenko S.V., Yelisseyev A.P., Davydov A.V., Kragzhda A.A, Kokh A.E., Kuznetsov A.B., Park S. Nature of the Color of Borates with "Anti-Zeolite" Structure // INORGANIC CHEMISTRY. - 2018. - Vol.57. - Iss. 5. - P.2744-2751. - ISSN 0020-1669.
Внешние системы: DOI: 10.1021/acs.inorgchem.7b03134; РИНЦ: 35507541; PubMed: 29457896; SCOPUS: 2-s2.0-85042925257; WoS: 000427094000048;
Реферат: eng: Crystals of the MnxBa12(BO3)(8-2x)F-8x phase were grown from a high-temperature solution. This new fluoride borate is built of positively charged [Ba-12(BO3)(6)](6+) blocks, the so-called "anti-zeolite" pattern. Using X-ray single-crystal diffraction, the bulk atomic arrangement in the centrosymmetric tetragonal unit cell in I4/mcm could be elucidated. Crystals of the (MnF6)(4-) group-containing solid solution MnxBa12(BO3)(8-2x)F-8x are dark brown in color in contrast to the differently colored crystals of (LiF4)(3-) group-containing "anti-zeolite" LiBa12(BO3)(7)F-4 (P4(2)bc). According to the electron spin resonance and optical spectroscopic investigation, the absorption spectrum of LiBa12(BO3)(7)F-4 crystals results from the absorption of light by both exciton and free charge carriers and can be tuned by varying the initial composition of the high-temperature solution.
Ключевые слова: ELECTRONS; OPTICAL-PROPERTIES; CRYSTAL; GROWTH;
Издано: 2018
Физ. характеристика: с.2744-2751
Цитирование: 1. Wu, B.; Tang, D.; Ye, N.; Chen, C. T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 1996, 5, 105-109. 2. Wang, Y.; Pan, S. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coord. Chem. Rev. 2016, 323, 15-35. 3. Yu, N.; Wang, S.; Ye, N.; Liang, F.; Lin, Z.; Luo, M.; Poeppelmeier, K. R. A deep ultra-violet nonlinear optical crystal: Strontium beryllium borate fluoride with planar Be(O/F)3 groups. Chem. Mater. 2016, 28, 4563-4571. 4. Wu, H.; Yu, H.; Yang, Z.; Hou, X.; Su, X.; Pan, K.; Poeppelmeier, K. R.; Rondinelli, J. M. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 2013, 135, 4215-4218. 5. Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.; Potaturkin, O. I.; Bekker, T. B.; Solntsev, V. P. Optical properties of borate crystals in terahertz region. Opt. Commun. 2013, 309, 333-337. 6. Wang, X.; Xia, M.; Li, R. K. A promising birefringent crystal Ba2Na3(B3O6)2F. Opt. Mater. 2014, 38, 6-9. 7. McMillen, C. D.; Stritzinger, J. T.; Kolis, J. W. Two novel acentric borate fluorides: M3B6O11F2 (M = Sr, Ba). Inorg. Chem. 2012, 51, 3953-3955. 8. Kidyarov, B. I. Comparative interrelationship of the structural, nonlinear-optical and other acentric properties for oxide, borate and carbonate crystals. Crystals 2017, 7, 109. 9. Bekker, T. B.; Rashchenko, S. V.; Seryotkin, Y. V.; Kokh, A. E.; Davydov, A. V.; Fedorov, P. P. BaO-B2O3 system and its mysterious member Ba3B2O6. J. Am. Ceram. Soc. 2018, 101, 450-457. 10. Rashchenko, S. V.; Bekker, T. B.; Bakakin, V. V.; Seryotkin, Y. V.; Simonova, E. A.; Goryainov, S. V. New fluoride borate with antizeolite structure: A possible link to Ba3(BO3)2. J. Alloys Compd. 2017, 694, 1196-1200. 11. Palacios, L.; Cabeza, A.; Bruque, S.; Garcia-Granda, S.; Aranda, M. A. G. Structure and electrons in mayenite electrides. Inorg. Chem. 2008, 47, 2661-2667. 12. Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272-76. 13. Bekker, T. B.; Rashchenko, S. V.; Solntsev, V. P.; Yelisseyev, A. P.; Kragzhda, A. A.; Bakakin, V. V.; Seryotkin, Y. V.; Kokh, A. E.; Kokh, K. A.; Kuznetsov, A. B. Growth and optical properties of LixNa1-xBa12(BO3)7F4 fluoride borates with anti-zeolite structure. Inorg. Chem. 2017, 56, 5411-5419. 14. Zhao, J.; Li, R. K. Two new barium borate fluorides AB12(BO3)7F4 (A = Li and Na). Inorg. Chem. 2014, 53, 2501-2505. 15. Kokh, A. E.; Simonova, E. A.; Maillard, A.; Maillard, R.; Svetlichnyi, V. A.; Andreev, Yu.M.; Kragzhda, A. A.; Kuznetsov, A. V.; Kokh, K. A. Linear dichroism effect in LiBa12(BO3)7F4 crystal. Cryst. Res. Technol. 2016, 51, 530-533. 16. Kokh, A. E.; Simonova, E. A.; Kokh, K. A.; Svetlichnyi, V. A.; Andreev, Yu. M. Material for dichroic polarization of light LiBa12(BO3)7F4. RU Patent RU 2615691, 2017 (in Russian). 17. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8. 18. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854. 19. Haken, H. Die Theorie des Exzitons im festen Korper. Fortschritte der Physik 1958, 6, 271-334. 20. Gross, E. F. Excitons and their motion in crystal lattices. Sov. Phys. Usp. 1962, 5, 195-218. 21. Kuznetsova, Y. Y.; Remeika, M.; High, A. A.; Hammack, A. T.; Butov, L. V.; Hanson, M.; Gossard, A. C. All-optical excitonic transistor. Opt. Lett. 2010, 35, 1587-1589. 22. Fowler, W. B. Physics of Color Centers; Academic Press: New York, 1968; Chapters 2 and 4. 23. Abragam, A.; Pryce, M. H. L. Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals. Proc. R. Soc. London, Ser. A 1951, 205, 135-153. 24. OBrien, M. C. M. The structure of the colour centers in smoky quartz. Proc. R. Soc. London, Ser. A 1955, 231, 404-414. 25. Schirmer, O. F. Trapped-hole centers containing lithium in MgO, CaO and SrO. J. Phys. Chem. Solids 1971, 32, 499-509. 26. Yelisseyev, A. P.; Jiang, X.; Solntsev, V. P.; Bekker, T. B.; Lin, Z. Optical and magnetic properties of Ba5(BO3)3F single crystals. Phys. Chem. Chem. Phys. 2014, 16, 24884-24891. 27. Yelisseyev, A. P.; Solntsev, V. P.; Jiang, X.; Bekker, T. B.; Lin, Z.; Fedorov, P. P. Electronic structure, magnetic and optical properties of the Ba7(BO3)4-xF2+3x crystal. J. Solid State Chem. 2015, 229, 358-365. 28. Bekker, T. B.; Solntsev, V. P.; Yelisseyev, A. P.; Rashchenko, S. V. Fluoride borates with [(BO3)F]4-↔ [F4]4-anionic isomorphism and X-ray sensitivity. Cryst. Growth Des. 2016, 16, 4493-4499. 29. Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. The effects of exchange interactions in the spectra of octahedral manganese. J. Phys. Soc. Jpn. 1966, 21, 692-704. 30. Dye, J. L. High-density electron anions in a nanoporous single crystal. Science 2003, 301, 607-608. 31. Phillips, R. C.; Pratt, W. P.; Dye, J. L. Thermionic emission from cold electride films. Chem. Mater. 2000, 12, 3642-3647. 32. Hayashi, K.; Matsuishi, S.; Kamiya, T.; Hirano, M.; Hosono, H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature 2002, 419, 462-465. 33. Medvedeva, J. E.; Freeman, A. J. Combining high conductivity with complete optical transparency: A band structure approach. Europhys. Lett. 2005, 69, 583-587.