Инд. авторы: Yuan L., Ohtani E., Ikuta D., Kamada S., Tsuchiya J., Naohisa H., Ohishi Y., Suzuki A.
Заглавие: Chemical Reactions Between Fe and H2O up to Megabar Pressures and Implications for Water Storage in the Earth's Mantle and Core
Библ. ссылка: Yuan L., Ohtani E., Ikuta D., Kamada S., Tsuchiya J., Naohisa H., Ohishi Y., Suzuki A. Chemical Reactions Between Fe and H2O up to Megabar Pressures and Implications for Water Storage in the Earth's Mantle and Core // Geophysical Research Letters. - 2018. - Vol.45. - Iss. 3. - P.1330-1338. - ISSN 0094-8276. - EISSN 1944-8007.
Внешние системы: DOI: 10.1002/2017GL075720; РИНЦ: 35535152; SCOPUS: 2-s2.0-85041531981; WoS: 000426161800016;
Реферат: eng: We investigated the phase relations of the Fe-H2O system at high pressures based on in situ X-ray diffraction experiments and first-principles calculations and demonstrate that FeHx and FeO are present at pressures less than similar to 78 GPa. A recently reported pyrite-structured FeO2 was identified in the Fe-H2O system at pressures greater than similar to 78 GPa after laser heating. The phase observed in this study has a unit cell volume 8%-11% larger than that of FeO2, produced in the Fe-O binary system reported previously, suggesting that hydrogen might be retained in a FeO2Hx crystal structure. Our observations indicate that H2O is likely introduced into the deep Earth through reaction between iron and water during the accretion and separation of the metallic core. Additionally, reaction between Fe and H2O would occur at the core-mantle boundary, given water released from hydrous subducting slabs that intersect with the metallic core. Accumulation of volatile-bearing iron compounds may provide new insights into the enigmatic seismic structures observed at the base of the lower mantle.
Ключевые слова: FEOOH; STABILITY; HYDROGEN; IN-SITU; DEEP LOWER-MANTLE; EQUATION-OF-STATE; X-RAY-DIFFRACTION; PHASE DELTA-ALOOH; IRON HYDRIDE; GPA;
Издано: 2018
Физ. характеристика: с.1330-1338
Цитирование: 1. Antonov, V. E., Cornell, K., Fedotov, V. K., Kolesnikov, A. I., Ponyatovsky, E. G., Shiryaev, V. I., & Wipf, H. (1998). Neutron diffraction investigation of the dhcp and hcp iron hydrides and deuterides. Journal of Alloys and Compounds, 264(1-2), 214–222. https://doi.org/10.1016/S0925-8388(97)00298-3 2. Badding, J., Hemley, R., & Mao, H. (1991). High-pressure chemistry of hydrogen in metals: In situ study of iron hydride. Science, 253(5018), 421–424. https://doi.org/10.1126/science.253.5018.421 3. Badding, J. V., Mao, H.-K., & Hemley, R. J. (1992). High-pressure crystal structure and equation of state of iron hydride: Implications for the Earth's core. In Y. Syono & M. H. Manghnani (Eds.), High-pressure research: application to Earth and planetary sciences (pp. 363–371). Washington, DC: American Geophysical Union. 4. Birch, F. (1952). Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2), 227–286. https://doi.org/10.1029/JZ057i002p00227 5. Brown, J., & Shankland, T. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of the Royal Astronomical Society, 66(3), 579–596. https://doi.org/10.1111/j.1365-246X.1981.tb04891.x 6. Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P. I., & Torrent, M. (2006). Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97(21), 215504. https://doi.org/10.1103/PhysRevLett.97.215504 7. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 8. Fei, Y., Frost, D. J., Mao, H.-K., Prewitt, C. T., & Haeusermann, D. (1999). In situ structure determination of the high-pressure phase of Fe3O4. American Mineralogist, 84(1-2), 203–206. https://doi.org/10.2138/am-1999-1-222 9. Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., & Prakapenka, V. (2007). Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophysical Research Letters, 34, L17307. https://doi.org/10.1029/2007GL030712 10. Fischer, R. A., Campbell, A. J., Shofner, G. A., Lord, O. T., Dera, P., & Prakapenka, V. B. (2011). Equation of state and phase diagram of FeO. Earth and Planetary Science Letters, 304(3-4), 496–502. https://doi.org/10.1016/j.epsl.2011.02.025 11. Frost, D. J., Liebske, C., Langenhorst, F., & McCammon, C. A. (2004). Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428(6981), 409–412. https://doi.org/10.1038/nature02413 12. Fukai, Y. (1984). The iron-water reaction and the evolution of the Earth. Nature, 308(5955), 174–175. https://doi.org/10.1038/308174a0 13. Fukai, Y. (1992). Some properties of the Fe-H system at high pressures and temperatures, and their implications for the Earth's core. In High-Pressure Research: Application to Earth and Planetary Sciences (Vol. 67, pp. 373–385). Washington, DC: TERRAPUB. 14. Ghosh, S., & Schmidt, M. W. (2014). Melting of phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochimica et Cosmochimica Acta, 145, 72–88. https://doi.org/10.1016/j.gca.2014.06.025 15. Gleason, A., Quiroga, C., Suzuki, A., Pentcheva, R., & Mao, W. (2013). Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth and Planetary Science Letters, 379, 49–55. https://doi.org/10.1016/j.epsl.2013.08.012 16. Hirao, N., Kondo, T., Ohtani, E., Takemura, K., & Kikegawa, T. (2004). Compression of iron hydride to 80 GPa and hydrogen in the Earth's inner core. Geophysical Research Letters, 31, L06616. https://doi.org/10.1029/2003GL019380 17. Hu, Q., Kim, D. Y., Liu, J., Meng, Y., Yang, L., Zhang, D., et al. (2017). Dehydrogenation of goethite in Earth's deep lower mantle. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 1498–1501. https://doi.org/10.1073/pnas.1620644114 18. Hu, Q., Kim, D. Y., Yang, W., Yang, L., Meng, Y., Zhang, L., & Mao, H.-K. (2016). FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Nature, 534(7606), 241–244. https://doi.org/10.1038/nature18018 19. Isaev, E. I., Skorodumova, N. V., Ahuja, R., Vekilov, Y. K., & Johansson, B. (2007). Dynamical stability of Fe-H in the Earth's mantle and core regions. Proceedings of the National Academy of Sciences of the United States of America, 104(22), 9168–9171. https://doi.org/10.1073/pnas.0609701104 20. Kiefer, B., Stixrude, L., & Wentzcovitch, R. M. (2002). Elasticity of (Mg,Fe)SiO3-perovskite at lower mantle conditions. Geophysical Research Letters, 29(11), 1539. https://doi.org/10.1029/2002GL014683 21. Kirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. (1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34(2), 261–306. https://doi.org/10.1029/96RG01050 22. Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R. T., Weck, P. F., et al. (2011). Discovery of the recoverable high-pressure iron oxide Fe4O5. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17,281–17,285. https://doi.org/10.1073/pnas.1107573108 23. Lavina, B., & Meng, Y. (2015). Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe5O6. Science Advances, 1(5), e1400260. https://doi.org/10.1126/sciadv.1400260 24. Liu, J., Hu, Q., Kim, D. Y., Wu, Z., Wang, W., Xiao, Y., et al. (2017). Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature, 551(7681), 494–497. https://doi.org/10.1038/nature24461 25. Mao, H. K., Hu, Q., Yang, L., Liu, J., Kim, D. Y., Meng, Y., et al. (2017). When water meets iron at Earth's core-mantle boundary. National Science Review, nwx109. https://doi.org/10.1093/nsr/nwx109 26. Mao, W. L., Sturhahn, W., Heinz, D. L., Mao, H. K., Shu, J., & Hemley, R. J. (2004). Nuclear resonant X-ray scattering of iron hydride at high pressure. Geophysical Research Letters, 31, L15618. https://doi.org/10.1029/2004GL020541 27. Mashino, I., Murakami, M., & Ohtani, E. (2016). Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle. Journal of Geophysical Research: Solid Earth, 121, 595–609. https://doi.org/10.1002/2015JB012477 28. McCammon, C. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387(6634), 694–696. https://doi.org/10.1038/42685 29. Narygina, O., Dubrovinsky, L. S., McCammon, C. A., Kurnosov, A., Kantor, I. Y., Prakapenka, V. B., & Dubrovinskaia, N. A. (2011). X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth's core. Earth and Planetary Science Letters, 307(3-4), 409–414. https://doi.org/10.1016/j.epsl.2011.05.015 30. Nishi, M., Kuwayama, Y., Tsuchiya, J., & Tsuchiya, T. (2017). The pyrite-type high-pressure form of FeOOH. Nature, 547(7662), 205–208. https://doi.org/10.1038/nature22823 31. Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., & Nishijima, M. (2014). Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport Into the base of lower mantle. Earth and Planetary Science Letters, 401, 12–17. https://doi.org/10.1016/j.epsl.2014.05.059 32. Ohishi, Y., Hirao, N., Sata, N., Hirose, K., & Takata, M. (2008). Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Pressure Research, 28(3), 163–173. https://doi.org/10.1080/08957950802208910 33. Ohtani, E., Hirao, N., Kondo, T., Ito, M., & Kikegawa, T. (2005). Iron-water reaction at high pressure and temperature, and hydrogen transport Into the core. Physics and Chemistry of Minerals, 32(1), 77–82. https://doi.org/10.1007/s00269-004-0443-6 34. Ohtani, E., Toma, M., Kubo, T., Kondo, T., & Kikegawa, T. (2003). In situ X-ray observation of decomposition of superhydrous phase B at high pressure and temperature. Geophysical Research Letters, 30(2), 1029. https://doi.org/10.1029/2002GL015549 35. Okuchi, T. (1997). Hydrogen partitioning into molten iron at high pressure: Implications for Earth's core. Science, 278(5344), 1781–1784. https://doi.org/10.1126/science.278.5344.1781 36. Otte, K., Pentcheva, R., Schmahl, W. W., & Rustad, J. R. (2011). Pressure-induced structural and electronic transitions in FeOOH form first principles. Physical Review B, 80, 205116 37. Pépin, C., Geneste, G., Dewaele, A., Mezouar, M., & Loubeyre, P. (2017). Synthesis of FeH5: A layered structure with atomic hydrogen slabs. Science, 357(6349), 382–385. https://doi.org/10.1126/science.aan0961 38. Pépin, C. M., Dewaele, A., Geneste, G., Loubeyre, P., & Mezouar, M. (2014). New iron hydrides under high pressure. Physical Review Letters, 113(26), 265504. https://doi.org/10.1103/PhysRevLett.113.265504 39. Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V. S., & Kuzmin, D. V. (2007). Metal saturation in the upper mantle. Nature, 449(7161), 456–458. https://doi.org/10.1038/nature06183 40. Sakamaki, K., Takahashi, E., Nakajima, Y., Nishihara, Y., Funakoshi, K., Suzuki, T., & Fukai, Y. (2009). Melting phase relation of FeHx up to 20 GPa: Implication for the temperature of the Earth's core. Physics of the Earth and Planetary Interiors, 174(1-4), 192–201. https://doi.org/10.1016/j.pepi.2008.05.017 41. Sakamaki, T., Ohtani, E., Fukui, H., Kamada, S., Takahashi, S., Sakairi, T., et al. (2016). Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Science Advances, 2(2), e1500802. https://doi.org/10.1126/sciadv.1500802 42. Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., et al. (2008). Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophysical Research Letters, 35, L03303. https://doi.org/10.1029/2007GL031718 43. Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., & Dueker, K. G. (2014). Dehydration melting at the top of the lower mantle. Science, 344(6189), 1265–1268. https://doi.org/10.1126/science.1253358 44. Shibazaki, Y., Ohtani, E., Fukui, H., Sakai, T., Kamada, S., Ishikawa, D., et al. (2012). Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth's core. Earth and Planetary Science Letters, 313, 79–85. 45. Shibazaki, Y., Ohtani, E., Terasaki, H., Suzuki, A., & Funakoshi, K.-i. (2009). Hydrogen partitioning between iron and ringwoodite: Implications for water transport into the Martian core. Earth and Planetary Science Letters, 287(3–4), 463–470. https://doi.org/10.1016/j.epsl.2009.08.034 46. Shim, S.-H., Grocholski, B., Ye, Y., Alp, E. E., Xu, S., Morgan, D., et al. (2017). Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences of the United States of America, 114(25), 6468–6473. https://doi.org/10.1073/pnas.1614036114 47. Sinmyo, R., Bykova, E., Ovsyannikov, S. V., McCammon, C., Kupenko, I., Ismailova, L., & Dubrovinsky, L. (2016). Discovery of Fe7O9: A new iron oxide with a complex monoclinic structure. Scientific Reports, 6(1), 32852. https://doi.org/10.1038/srep32852 48. Smith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J., Richardson, S. H., & Wang, W. (2016). Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 354(6318), 1403–1405. https://doi.org/10.1126/science.aal1303 49. Stevenson, D. J. (1990). Fluid dynamics of core formation. In H. E. Newsom & J. E. Jones (Eds.), Origin of the Earth (pp. 231–250). New York: Oxford University Press. 50. Stixrude, L., & Lithgow-Bertelloni, C. (2005). Thermodynamics of mantle minerals—I. Physical properties. Geophysical Journal International, 162(2), 610–632. https://doi.org/10.1111/j.1365-246X.2005.02642.x 51. Suzuki, A., Ohtani, E., & Kamada, T. (2000). A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 C. Physics and Chemistry of Minerals, 27(10), 689–693. https://doi.org/10.1007/s002690000120 52. Tagawa, S., Ohta, K., Hirose, K., Kato, C., & Ohishi, Y. (2016). Compression of Fe–Si–H alloys to core pressures. Geophysical Research Letters, 43, 3686–3692. https://doi.org/10.1002/2016GL068848 53. Terasaki, H., Ohtani, E., Sakai, T., Kamada, S., Asanuma, H., Shibazaki, Y., et al. (2012). Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit. Physics of the Earth and Planetary Interiors, 194, 18–24. 54. Townsend, J. P., Tsuchiya, J., Bina, C. R., & Jacobsen, S. D. (2015). First-principles investigation of hydrous post-perovskite. Physics of the Earth and Planetary Interiors, 244, 42–48. https://doi.org/10.1016/j.pepi.2015.03.010 55. Townsend, J. P., Tsuchiya, J., Bina, C. R., & Jacobsen, S. D. (2016). Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth and Planetary Science Letters, 454, 20–27. https://doi.org/10.1016/j.epsl.2016.08.009 56. Walter, M., Thomson, A., Wang, W., Lord, O., Ross, J., McMahon, S., et al. (2015). The stability of hydrous silicates in Earth's lower mantle: Experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chemical Geology, 418, 16–29. https://doi.org/10.1016/j.chemgeo.2015.05.001 57. Weerasinghe, G. L., Pickard, C. J., & Needs, R. (2015). Computational searches for iron oxides at high pressures. Journal of Physics Condensed Matter, 27(45), 455501. https://doi.org/10.1088/0953-8984/27/45/455501 58. Zhu, S. C., Hu, Q., Mao, W. L., Mao, H. K., & Sheng, H. (2017). Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism of FeO2H at high pressure. Journal of the American Chemical Society, 139(35), 12,129–12,132. https://doi.org/10.1021/jacs.7b06528