Инд. авторы: Doroshkevich A.G., Prokopyev I.R, Izokh A.E., Klemd R., Ponomarchuk A.V., Nikolaeva I.V., Vladykin N.V.
Заглавие: Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield
Библ. ссылка: Doroshkevich A.G., Prokopyev I.R, Izokh A.E., Klemd R., Ponomarchuk A.V., Nikolaeva I.V., Vladykin N.V. Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield // Journal of Asian Earth Sciences. - 2018. - Vol.154. - P.354-368. - ISSN 1367-9120. - EISSN 1878-5786.
Внешние системы: DOI: 10.1016/j.jseaes.2017.12.030; РИНЦ: 35494310; SCOPUS: 2-s2.0-85044762890; WoS: 000425202000025;
Реферат: eng: The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18 wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct O-18- and C-13-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative epsilon Nd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.
Ключевые слова: Trace element composition and isotopic data; Hydrothermal processes; Enriched source; Aldan-Stanovoy shield; SIBERIAN-CRATON; DOLOMITE CARBONATITE; NORTH TRANSBAIKALIA; OXYGEN; SYSTEMATICS; MINERALS; PETROGENESIS; FRACTIONATION; ROCKS; COMPLEX; Magnesiocarbonatites;
Издано: 2018
Физ. характеристика: с.354-368
Цитирование: 1. Agashev, A.M., Pokhilenko, N.P., Takazawa, E., McDonald, J.A., Vavilov, M.A., Primary melting sequence of a deep (> 250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada. Chem. Geol. 255:3 (2008), 317–328. 2. Ariskin, A.A., Danyushevsky, L.V., Konnikov, E.G., Maas, R., Kostitsyn, Yu.A., McNeill, A., Meffre, S., Nikolaev, G.S., Kislov, E.V., The Dovyren intrusive complex (Northern Baikal Region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source. Russ. Geol. Geophys. 56:3 (2015), 528–556. 3. Bau, M., Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of Eu. Chem. Geol. 93 (1991), 219–230. 4. Baumgartner, L.P., Valley, J.W., Stable isotope transport and contact metamorphic fluid flow. Valley, J.W., Cole, D.R., (eds.) Stable Isotope Geochemistry Rev Mineral Geochem, vol. 43, 2001, Mineral Soc Am, Chantilly, 415–467. 5. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.J., Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143 (2002), 602–622. 6. Berezkin, V.I., Smelov, A.P., Zedgenizov, A.N., Kravchenko, A.A., Popov, N.V., Timofeev, V.F., Toropova, L.I., 2015. The Geological Structure of the Central Part of the Aldan-Stanovoy Shield and Chemical Compositions of the Early Precambrian Rocks (South Yakutia), Novosibirsk, p. 459 (in Russian). 7. Bogatikov, O.A., Kononova, V.A., Pervov, V.A., Zhuravlev, D.Z., Petrogenesis of Mesozoic Potassic Magmatism of the Central Aldan: a Sr-Nd isotopic and geodynamic model. Int. Geol. Rev. 36:7 (1994), 629–644. 8. Bouvier, A., Vervoort, J.D., Patchett, P.J., The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273:1–2 (2008), 48–57. 9. Bowman, J.R., Stable-isotope systematics of skarns. Lentz, D.R., (eds.) Mineralized Intrusion-related Skarn Systems Short Course, vol. 26, 1998, Mineral Assoc Can, Ottawa, 99–145. 10. Boyarko, G.Y., 1983. Geological and Geochemical Features of the Seligdar Apatite Deposits. PhD thesis, Tomsk, p. 121 (in Russian). 11. Bulakh, A.G., Zolotarev, A.A., Bobrova, I.P., Gulii, V.I., Vande-Kirkov, Y.V., The main features of mineralogy and genesis of the Seligdar apatite deposit (Aldan crystalline shield). Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva CXIII:4 (1984), 398–410 (in Russian). 12. Chacko, T., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., Oxygen and carbon isotope fractionation between CO2 and calcite. Geochim. Cosmochim. Acta 55 (1991), 2867–2882. 13. Chakhmouradian, A.R., Böhm, C.O., Demèny, A., Reguir, E.P., Hegner, E., Creaser, R.A., Halden, N.M., Yang, P., “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112S (2009), 347–357. 14. Chakhmouradian, A.R., Reguir, E.P., Couëslan, C., Yang, P., Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Mineral. Petrol. 110 (2016), 361–377. 15. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický J., Mumin, A.H., Yang, P., Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274–275 (2017), 188–213. 16. Dalton, J.A., Wood, B.J., The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 119 (1993), 511–525. 17. Deines, P., Stable isotope varition in carbonatites. Bell, K., (eds.) Carbonatites: Genesis and Evolution, 1989, Hyman, London, 301–359. 18. Demény, A., Sitnikova, M.A., Karchevsky, P.I., Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite–carbonatite relationships and source compositions. Wall, F., Zaitsev, A.N., (eds.) Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province, 2004, Mineralogical Society Series, London, 407–431. 19. Demény, A., Vennemann, T.W., Ahijado, A., Casillas, R., a. Oxygen isotope thermometry in carbonatites, Fuerteventura, Canary Islands, Spain. Mineral. Petrol. 80 (2004), 155–172. 20. Donskaya, T.V., Gladkochub, D.P., Kovach, V.P., Mazukabzov, A.M., Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian craton. Petrology 13:3 (2005), 253–279. 21. Doroshkevich, A.G., Petrology of Carbonatites and Carbonate-Bearing Alkaline Complexes of the Western Transbaikalia. 2013, GIN SB RAS, Ulan-Ude Doctoral thesis. 22. Doroshkevich, A.G., Wall, F., Ripp, G.S., Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral. Petrol. 90 (2007), 19–49. 23. Doroshkevich, A.G., Wall, F., Ripp, G.S., Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia. Contrib. Mineral. Petrol. 153 (2007), 339–353. 24. Doroshkevich, A.G., Veksler, I.V., Izbrodin, I.A., Ripp, G.S., Khromova, E.A., Posokhov, V.F., Travin, A.V., Vladykin, N.V., Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: implications for the sources of the parental magma and metasomatizing fluids. J. Asian Earth Sci. 116 (2016), 81–96. 25. Doroshkevich, A.G., Veksler, I.V., Klemd, R., Elena, A., Khromova, E.A., Izbrodin, I.A., Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–285 (2017), 91–108. 26. Egin, V.I., Kichigin, L.N., Apatite ore-formation of the Central Aldan region. Phosphates of Yakutia, 1975, Yakutsk Institute of the USSR Academy of Sciences, Yakutsk, 75–80 (in Russian). 27. Entin, A.R., Smirnov, F.L., Apatite-bearing geological complexes of the Aldan shield. Phosphates of Yakutia, 1975, Yakutsk Institute of the USSR Academy of Sciences, Yakutsk, 15–25 (in Russian). 28. Entin, A.R., Tyan, O.A., Before-carbonatite Step of Formation of Apatite Deposits of Seligdar Type (Aldan). 1984, USSR SB RAS, Yakutsk, 28 (in Russian). 29. Entin, A.P., Zaitzev, A.I., Labeznik, K.A., Nenachev, N.I., Marchintzev, V.K., Tyan, O.A., Carbonatites of Yakutia: mineralogy and composition. 1991, YaSC SD RAS, Yakutsk, 240. 30. Ernst, R.E., Bell, K., Large igneous provinces (LIPs) and carbonatites. Mineral. Petrol. 98 (2010), 55–76. 31. Ernst, R.E., Hamilton, M.A., Söderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V., Kolotilina, T., Mekhonoshin, A.S., Bleeker, W., LeCheminant, A.N., Buchan, K.L., Chamberlain, K.R., Didenko, A.N., Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 9 (2016), 464–469. 32. Friedman, I., O'Neil, J.R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geol. Surv. Prof. Pap. 440-KK, p. 49. 33. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Natapov, L.M., Mazukabzov, A.M., Stanevich, A.M., Sklyarov, E.V., The Siberian craton and its evolution in terms of the Rodinia hypothesis. Episodes 29:3 (2006), 169–174. 34. Gladkochub, D.P., Donskaya, T.V., Ernst, R., Mazukabzov, A.M., Sklyarov, E.V., Pisarevsky, S.A., Wingate, M., Söderlund, U., Proterozoic basic magmatism of the Siberian craton: main stages and their geodynamic interpretation. Geotectonics 46:4 (2012), 273–284. 35. Goldstein, S.J., Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution. Earth Plan. Sci. Lett. 87 (1988), 249–265. 36. Gongalsky, B.I., Sukhanov, M.K., Goltzman, Yu.V., Sm-Nd system of Chiney anorthozite-gabbro-norithe pluton (East Transbaikalia). Problems of Ore Geology Deposits, Mineralogy, Petrology and Geochemistry, 2008, IGEM RAS, Moscow, 57–60. 37. Hammouda, T., Chantel, J., Devidal, J.-L., Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim. Cosmochim. Acta 74 (2010), 7220–7235. 38. Harmer, R.E., The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. J. Petrol. 40 (1999), 525–548. 39. Harmer, R.E., Gittins, J., The case for primary, mantle-derived carbonatite magma. J. Petrol. 39 (1998), 1895–1903. 40. Haynes, E.A., Moecher, D.P., Spicuzza, M.J., Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: constraints on crystallization temperatures of carbonatite magmas. Chem. Geol. 193 (2003), 43–57. 41. Helz, G.R., Holland, H.D., The solubility and geologic occurrence of strontianite. Geochim. Cosmochim. Acta 29 (1965), 1305–1315. 42. Hoskin, P.W.O., Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 53 (2003), 27–62. 43. Javoy, M., Fourcade, S., Allegre, C.J., Graphical method for examination of 18O/16O fractionations in silicate rocks. Earth Planet. Sci. Lett. 10 (1970), 12–16. 44. Khomich, V.G., Boriskina, N.G., Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ. Geol. Geophys. 51:6 (2010), 661–671. 45. Klemme, S., Dalpé C., Trace-element partitioning between apatite and carbonatite melt. Am. Mineral. 88 (2003), 639–646. 46. Kogarko, L.N., Kurat, G., Ntaflos, T., Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contr. Miner. Petrol. 140 (2001), 577–587. 47. Kotov, A.B., Kovach, V.P., Sal'nikova, E.B., Age and stages of continental crust formation in central part of Aldan granulite-gneiss field: U-Pb and Sm-Nd isotope data for granites. Petrology 1:1 (1995), 97–108 (in Russian). 48. Kuleshov, V.N., Isotope Composition and Sources of Deep Carbonates. 1986, Nauka, Moscow., 122. 49. Larin, A.M., Kotov, A.B., Sal'nikova, E.B., Kovach, V.P., Makarev, L.B., Timashkov, A.N., Berezhnaya, N.G., Yakovleva, S.Z., New data on the age of granites of the Kodar and Tukuringra complexes, eastern Siberia: geodynamic constraints. Petrology 8:3 (2000), 267–279. 50. Mekhonoshin, A.S., Ernst, R., Soderlund, U., Hamilton, M.A., Kolotilin, A.T.B., Izokh, A.E., Polyakov, G.V., Tolstykh, N.D., Relationship between platinum-bearing ultramafic- mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russ. Geol. Geophys. 57:5 (2016), 822–833. 51. Michard, A., Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53 (1989), 745–750. 52. Minin, V.A., Vasilenko, V.B., Kuznetsova, L.G., Prugov, V.P., To mineralogy of calcite-magnetite-apatite-serpentine rocks of the Seligdar deposit (Yakutia). Zapiski RMO CXLV 1 (2016), 80–104. 53. Mitchell, R.H., Smith, C.B., Vladykin, N.V., Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia. Lithos 32 (1994), 243–248. 54. Möller, P., Rare earth elements and yttrium as geochemical indicators of the source of mineral and thermal waters. Stober, I., Bucher, K., (eds.) Hydrology of Crystalline Rocks, 2000, Kluwer Acad Press, 227–246. 55. Mourtada, S., Le Bas, M.J., Pin, C., Petrogenesis of Mg-carbonatites from Tamazert in the Moroccan High Atlas. CR Acad. Sci. II A 325 (1997), 559–564. 56. Neimark, L.A., Larin, A.M., Nemchin, A.A., Ovchinnikova, G.V., Rytsk, E.Y., Geochemical, geochronological (U–Pb) and isotopic (Pb, Nd) evidence of anorogenic magmatism in the North Baikal volcanoplutonic belt. Petrology 6:4 (1998), 139–164. 57. Nikolaeva, I.V., Palesskii, S.V., Kozmenko, O.A., Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 46:10 (2008), 1016–1022. 58. Nozhkin, A.D., Bibikova, E.V., Turkina, O.M., Ponomarchuk, V.A., U-Pb, Ar–Ar, and Sm–Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Russ. Geol. Geophys. 9 (2003), 842–852. 59. Pirajno, F., Santosh, M., Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: an overview. Ore Geol. Rev. 63 (2014), 265–295. 60. Popov, N.V., Kotov, A.B., Postnikov, A.A., Sal'nikova, E.B., Shaporina, M.N., Larin, A.M., Yakovleva, S.Z., Plotkina, Y.V., Fedoseenko, A.M., Age and tectonic position of the Chiney Layered Massif, Aldan shield. Dokl. Earth Sci. 424:1 (2009), 64–67. 61. Prokopyev, I.R., Doroshkevich, A.G., Ponomarchuk, A.V., Sergeev, S.A., Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol. Rev. 81 (2017), 296–308. 62. Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P., Zaitsev, A.N., Early magmatic and reaction induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can. Mineral. 46 (2008), 879–900. 63. Sharp, Z.D., A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54 (1990), 1353–1357. 64. Shokhonova, M.N., Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., Paderin, I.P., Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russ. Geol. Geophys. 51 (2010), 815–832. 65. Smelov, A.P., Nikitin, V.M., Biryul'kin, G.V., Popov, N.V., Metallogenic units of North-Asian craton. Parfenov, L.M., Kuzmin, M.I., (eds.) Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia), 2001, MAIK Nauka Interperiodica, M, 301–333 (in Russian). 66. Smirnov, F.L., Marshintsev, Z.K., Moskvitina, A.V., Typomorphic Features of Apatite Deposits and Occurrences of the Aldan Shield. Phosphorus Geochemistry and Mineralogy Characteristics of Apatite. 1976, USSR SB RAS, Yakutsk, 5–31 (in Russian). 67. Sun, S.-S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., London, Special Publ. 42 (1989), 313–345. 68. Taylor, H.P. Jr., Water/rock interaction and the origin of H2O in granitic batholiths. J. Geol. Soc. London 133 (1977), 509–558. 69. Taylor, H.P. Jr. Sheppard, S.M.F., 1986. Stable isotopes in high temperature geological processes. In: Valley, J.W., Taylor, H.P., Jr., O'Neil, J.R., (Eds.), Stable Isotopes in High Temperature Geological Processes. Rev. Mineral. 16, pp. 227–269. 70. Tolstykh, N.D., Orsoev, D.A., Krivenko, A.P., Izoch, A.E., Noble Metals in Layered Ultrabasic- basic Massifs in the Southern Part of Siberian Platform. 2008, Parallel, Novosibirsk, 194. 71. Tretiakova, I.G., Belousova, E.A., Malkovets, V.G., Griffin, W.L., Piazolo, S., Pearson, N.J., O'Reilly, S.Y., Nishido, H., Recurrent magmatic activity on a lithosphere-scale structure: crystallization and deformation in kimberlitic zircons. Gondw. Res. 42 (2017), 126–132. 72. Turkina, O.M., Bibikova, E.V., Nozhkin, A.D., Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian craton. Dokl. Earth Sci. 389:2 (2003), 159–163. 73. Urmantseva, L.N., Turkina, O.M., Kapitonov, I.N., Protoliths of paleoproterozoic calciphyres from the Irkut block (Sharyzhalgai uplift of the Siberian craton): composition and origin. Russ. Geol. Geophys. 53:12 (2012), 1681–1697. 74. Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry 53, pp. 343–385. 75. Vasilenko, V.B., Kuznetsova, L.G., Kholodova, L.D., Apatite Rocks of the Seligdar. 1982, Nauka, Novosibirsk, 213 (in Russian). 76. Veizer, J., Clayton, R.N., Hinton, R.W., Geochemistry of Precambrian carbonates: Early Paleoproterozoic (2.25 ± 0.25 Ga) seawater Geochim. Cosmochim. Acta 56 (1992), 875–885. 77. Velikoslavinsky, S.D., Kotov, A.B., Sal'nikova, E.B., Protoliths of the metamorphic rocks of the Fedorov Complex, Aldan shield: Character, age, and geodynamic environments of origin. Petrology 14:1 (2006), 21–38. 78. Viladkar, S.G., Carbonatite occurrences in Rajasthan, India. Petrology 6:3 (1998), 272–283. 79. Vladykin, N.V., Morikyo, T., Miuazaki, T., 2005. Geochemistry of Sr and Nd isotopes in the carbonatites of Siberia and Mongolia and some geodynamic implications, In: Vladykin, N.V. (Eds.), Deep-seated Magmatizm, Its Sources and Their Relation to Plume Processes, Irkutsk, pp. 89–107. 80. Woolley, A.R., Kempe, D.R.C., Carbonatites: nomenclature, average chemical composition, and element distribution. Bell, K., (eds.) Carbonatites: Genesis and Evolution, 1989, Unwin Hyman, London, 1–14. 81. Yarmolyuk, V.V., Kovalenko, V.I., Sal'nikova, E.B., Nikiforov, A.V., Kotov, A.B., Vladykin, N.V., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian craton. Dokl. Earth Sci. 404:7 (2005), 1031–1037. 82. Zaitzev, A.I., Entin, A.P., Nenashev, N.I., Labeznik, K.A., Tyan, O.A., Geochronology and isotope geochemistry of carbonatites from Yakutia. 1992, YSC SB RAS, Yakutsk, 248. 83. Zheng, Y.F., Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 120 (1993), 247–263. 84. Zheng, Y.F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57 (1993), 1079–1091. 85. Zheng, Y.F., Oxygen isotope fractionations involving apatites: application to paleotemperature determination. Chem. Geol. 127 (1996), 177–187. 86. Zheng, Y.F., Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33 (1999), 109–126. 87. Zolotarev, A.A., Bobrova, I.P., Bulakh, A.G., 1983. Mineralogy and feature of genesis for apatite-“forsterite”-carbonate rocks, Seligdar deposit (Aldan) Zapiski vsesoyuznogo mineralogicheskogo obschestva Vol. CXП (3), pp. 325–333 (in Russian).