Инд. авторы: Ionov D.A., Doucet L.S., Xu Y.G., Golovin A.V., Oleinikov O.B.
Заглавие: Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite
Библ. ссылка: Ionov D.A., Doucet L.S., Xu Y.G., Golovin A.V., Oleinikov O.B. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite // Geochimica et Cosmochimica Acta. - 2018. - Vol.224. - P.132-153. - ISSN 0016-7037. - EISSN 1872-9533.
Внешние системы: DOI: 10.1016/j.gca.2017.12.028; РИНЦ: 35510099; SCOPUS: 2-s2.0-85041302455; WoS: 000424973700008;
Реферат: eng: The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 degrees C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (<= 0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and reworked garnet-bearing peridotites are absent. The modal, chemical and Os-isotope compositions of the Obnazhennaya xenoliths produced by reaction of refractory peridotites with melts are very particular (high Ca/Al, no Mg#-Al correlations, highly variable Cr, low Os-187/Os-188, continuous modal range from olivine-rich to low-olivine peridotites, wehrlites and websterites) and distinct from those of fertile lherzolites in off-craton xenoliths and peridotite massifs. These features argue against the concept of 'refertilization' of cratonic and other refractory peridotites by mantle-derived melts as a major mechanism to form fertile to moderately depleted lherzolites in continental lithosphere. The Obnazhennaya xenoliths represent a natural rock series produced by 'refertilization', but include no rocks equivalent in modal, major and trace element to the fertile lherzolites. This study shows that 'refertilization' yields broad, continuous ranges of modal and chemical compositions with common wehrlites and websterites that are rare among off-craton xenoliths. (C) 2018 Elsevier Ltd. All rights reserved.
Ключевые слова: U-PB; RE-OS; LITHOSPHERIC MANTLE; SR-ND ISOTOPE; OS ISOTOPE SYSTEMATICS; SHALLOW REFRACTORY MANTLE; TRACE-ELEMENT COMPOSITIONS; NORTH CHINA CRATON; Metasomatism; Carbonate; Pyroxenite; Garnet peridotite; Xenolith; Siberian craton; Lithospheric mantle; SPINEL PERIDOTITE XENOLITHS; UDACHNAYA KIMBERLITE;
Издано: 2018
Физ. характеристика: с.132-153
Цитирование: 1. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161 (2013), 201–215. 2. Agashev, A.M., Pokhilenko, N.P., Tolstov, A.V., Polyanichko, V.V., Malkovets, V.G., Sobolev, N.V., New age data on kimberlites from the Yakutian diamondiferous province. Doklady Akad. Nauk SSSR Earth Sci. Sect. 399 (2004), 1142–1145. 3. Aulbach, S., Mungall, J.E., Pearson, D.G., Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Rev. Miner. Geochem. 81 (2016), 239–304. 4. Blanco, D., Kravchinsky, V.A., Konstantinov, K.M., Kabin, K., Paleomagnetic dating of Phanerozoic kimberlites in Siberia. J. Appl. Geophys. 88 (2013), 139–153. 5. Bodinier, J.-L., Garrido, C.J., Chanefo, I., Bruguier, O., Gervilla, F., Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the ronda peridotite (Southern Spain). J. Petrol. 49 (2008), 999–1025. 6. Boyd, F.R., Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96 (1989), 15–26. 7. Boyd, F.R., McCallister, R.H., Densities of fertile and sterile garnet peridotites. Geophys. Res. Lett. 3 (1976), 509–512. 8. Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Miner. Petrol. 128 (1997), 228–246. 9. Brey, G., Brice, W.R., Ellis, D.J., Green, D.H., Harris, K.L., Ryabchikov, I.D., Pyroxene-carbonate reactions in the upper mantle. Earth Planet. Sci. Lett. 62 (1983), 63–74. 10. Brey, G.P., Köhler, T., Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31 (1990), 1353–1378. 11. Bussweiler, Y., Stone, R.S., Pearson, D.G., Luth, R.W., Stachel, T., Kjarsgaard, B.A., Menzies, A., The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib. Miner. Petrol. 171 (2016), 1–25. 12. Carlson, R.W., Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 82 (2005), 249–272. 13. Carlson, R.W., Pearson, D.G., James, D.E., Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys., 43, 2005, RG1001. 14. Casagli, A., Frezzotti, M.L., Peccerillo, A., Tiepolo, M., De Astis, G., (Garnet)-spinel peridotite xenoliths from Mega (Ethiopia): evidence for rejuvenation and dynamic thinning of the lithosphere beneath the southern Main Ethiopian Rift. Chem. Geol. 455 (2017), 231–248. 15. Chu, Z.-Y., Wu, F.-Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.-H., Wilde, S.A., Temporal evolution of the lithospheric mantle beneath the Eastern North China Craton. J. Petrol. 50 (2009), 1857–1898. 16. Dalton, J.A., Presnall, D.C., The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system: CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J. Petrol. 39 (1998), 1953–1964. 17. Dalton, J.A., Wood, B.J., The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 119 (1993), 511–525. 18. Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M., Withers, A.C., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262 (2009), 57–77. 19. Davis, G.L., Sobolev, N.V., Kharkiv, A.D., New data on the age of Yakutian kimberlites from the U-Pb method on zircons. Trans. (Doklady) Russ. Acad. Sci. 254 (1980), 175–179. 20. Dawson, J.B., Contrasting types of upper-mantle metasomatism?. Kornprobst, J., (eds.) Kimberlites II. The Mantle and Crust-Mantle Relationships, 1984, Elsevier, Amsterdam, 282–331. 21. Doucet, L., Ionov, D., Golovin, A., The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Miner. Petrol. 165 (2013), 1225–1242. 22. Doucet, L.S., Ionov, D.A., Golovin, A.V., Pokhilenko, N.P., Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 359–360 (2012), 206–218. 23. Elthon, D., Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J. Geophys. Res. 97 (1992), 9015–9025. 24. Fan, W.M., Zhang, H.F., Baker, J., Jarvis, K.E., Mason, P.R.D., Menzies, M.A., On and off the North China Craton: where is the Archaean keel?. J. Petrol. 41 (2000), 933–950. 25. Field, S.W., Haggerty, S.E., Symplectites in upper mantle peridotites: development and implications for the growth of subsolidus garnet, pyroxene and spinel. Contrib. Mineral. Petrol. 118 (1994), 138–156. 26. Foley, S.F., Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1 (2008), 503–510. 27. Gaetani, G.A., Kent, A.J.R., Grove, T.L., Hutcheon, I.D., Stolper, E.M., Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib. Mineral. Petrol. 145 (2003), 391–405. 28. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.-S., Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 198 (2002), 307–322. 29. Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R., Yang, J., Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270 (2008), 41–53. 30. Gervasoni, F., Klemme, S., Rohrbach, A., Grützner, T., Berndt, J., Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos 282–283 (2017), 173–186. 31. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 455 (2017), 357–375. 32. Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N., Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357–358 (2012), 99–110. 33. Green, D.H., Wallace, M.E., Mantle metasomatism by ephemeral carbonatite melts. Nature 336 (1988), 459–462. 34. Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P., The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1999), 1–35. 35. Harte, B., Mantle peridotites and processes – the kimberlite sample. Hawkesworth, C.J., Norry, M.J., (eds.) Continental Basalts and Mantle Xenoliths, 1983, Shiva, Norwich, UK, 46–91. 36. Hauri, E.H., Shimizu, N., Dieu, J.J., Hart, S.R., Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365 (1993), 221–227. 37. Hellebrand, E., Snow, J.E., Hoppe, P., Hofmann, A.W., Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. 43 (2002), 2305–2338. 38. Herzberg, C., Geodynamic information in peridotite petrology. J. Petrol. 45 (2004), 2507–2530. 39. Herzberg, C., Condie, K., Korenaga, J., Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292 (2010), 79–88. 40. Herzberg, C., Rudnick, R., Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149 (2012), 4–15. 41. Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A., Agashev, A.M., Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187 (2014), 209–224. 42. Humphreys, E.D., Schmandt, B., Bezada, M.J., Perry-Houts, J., Recent craton growth by slab stacking beneath Wyoming. Earth Planet. Sci. Lett. 429 (2015), 170–180. 43. Hunter, R.H., McKenzie, D., The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet. Sci. Lett. 92 (1989), 347–356. 44. Ionov, D.A., Trace element composition of mantle-derived carbonates and coexisting phases in peridotite xenoliths from alkali basalts. J. Petrol. 39 (1998), 1931–1941. 45. Ionov, D.A., Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle. J. Petrol. 45 (2004), 343–367. 46. Ionov, D.A., Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contrib. Mineral. Petrol. 154 (2007), 455–477. 47. Ionov, D.A., Ashchepkov, I., Jagoutz, E., The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem. Geol. 217 (2005), 41–75. 48. Ionov, D.A., Bodinier, J.-L., Mukasa, S.B., Zanetti, A., Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J. Petrol. 43 (2002), 2219–2259. 49. Ionov, D.A., Carlson, R.W., Doucet, L.S., Golovin, A.V., Oleinikov, O.B., The age and history of the lithospheric mantle of the Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. Earth Planet. Sci. Lett. 428 (2015), 108–119. 50. Ionov, D.A., Chanefo, I., Bodinier, J.-L., Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib. Miner. Petrol. 150 (2005), 335–353. 51. Ionov, D.A., Chazot, G., Chauvel, C., Merlet, C., Bodinier, J.-L., Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: a record of pervasive, multi-stage metasomatism in shallow refractory mantle. Geochim. Cosmochim. Acta 70 (2006), 1231–1260. 52. Ionov, D.A., Doucet, L.S., Ashchepkov, I.V., Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51 (2010), 2177–2210. 53. Ionov, D.A., Doucet, L.S., Carlson, R.W., Golovin, A.V., Korsakov, A.V., Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 165 (2015), 466–483. 54. Ionov, D.A., Doucet, L.S., Pogge von Strandmann, P.A.E., Golovin, A.V., Korsakov, A.V., Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chem. Geol. 475 (2017), 105–121. 55. Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S., Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett. 119 (1993), 283–297. 56. Ionov, D.A., Hofmann, A.W., Depth of formation of sub-continental off-craton peridotites. Earth Planet. Sci. Lett. 261 (2007), 620–634. 57. Ionov, D.A., O'Reilly, S.Y., Griffin, W.L., Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 141 (1997), 153–184. 58. Ionov, D.A., O'Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S., Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace element residence. Contrib. Mineral. Petrol. 125 (1996), 375–392. 59. Ionov, D.A., Prikhodko, V.S., Bodinier, J.-L., Sobolev, A.V., Weis, D., Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib. Miner. Petrol. 149 (2005), 647–665. 60. Ionov, D.A., Savoyant, L., Dupuy, C., Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostandard. Newsl. 16 (1992), 311–315. 61. Ionov, D.A., Shirey, S.B., Weis, D., Brügmann, G., Os-Hf-Sr-Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: effects of pervasive metasomatism in shallow refractory mantle. Earth Planet. Sci. Lett. 241 (2006), 47–64. 62. Kelemen, P.B., Reaction between ultramafic wall rock and fractionating basaltic magma: Part I – Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol. 31 (1990), 51–98. 63. Kelemen, P.B., Dick, H.J., Quick, J.E., Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358 (1992), 635–641. 64. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. Geofiz. 38 (1997), 91–99 (in Russian). 65. Kostrovitsky, S.I., Skuzovatov, S.Y., Yakovlev, D.A., Sun, J., Nasdala, L., Wu, F.-Y., Age of the Siberian craton crust beneath the northern kimberlite fields: insights to the craton evolution. Gondwana Res. 39 (2016), 365–385. 66. Lee, C.-T., Rudnick, R.L., McDonough, W.F., Horn, I., Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib. Mineral. Petrol. 139 (2000), 470–484. 67. Liu, J., Riches, A.J.V., Pearson, D.G., Luo, Y., Kienlen, B., Kjarsgaard, B.A., Stachel, T., Armstrong, J.P., Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Res. 272 (2016), 168–184. 68. McDonough, W.F., Sun, S.-S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253. 69. Meisel, T., Walker, R.J., Irving, A.J., Lorand, J.-P., Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65 (2001), 1311–1323. 70. Mercier, J.-C.C., Nicolas, A., Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J. Petrol. 16 (1975), 454–487. 71. Merlet, C., An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim. Acta 114:115 (1994), 363–376. 72. Mitchell, A.L., Grove, T.L., Experiments on melt–rock reaction in the shallow mantle wedge. Contrib. Miner. Petrol., 171, 2016, 107. 73. Morgan, Z., Liang, Y., An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contrib. Mineral. Petrol. 150 (2005), 369–385. 74. Moyen, J.-F., Paquette, J.L., Ionov, D.A., Gannoun, A., Korsakov, A.V., Golovin, A.V., Moine, B.N., Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. Earth Planet. Sci. Lett. 457 (2017), 149–159. 75. Neumann, E.-R., Wulff-Pedersen, E., Pearson, N.J., Spenser, E.A., Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J. Petrol. 43 (2002), 825–857. 76. Nickel, K.G., Green, D.H., Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73 (1985), 158–170. 77. Nimis, P., Grütter, H., Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Miner. Petrol. 159 (2010), 411–427. 78. Paquette, J.L., Ionov, D.A., Agashev, A.M., Gannoun, A., Nikolenko, E.I., Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precambrian Res. 301 (2017), 134–144. 79. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, S.R., Chenery, S.P., A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard. Newsl. 21 (1997), 115–144. 80. Pearson, D.G., Canil, D., Shirey, S.B., Mantle samples included in volcanic rocks: xenoliths and diamonds. Carlson, R.W., (eds.) Treatise on Geochemistry, second ed., 2014, Elsevier, Oxford, 169–253. 81. Pearson, D.G., Irvine, G.J., Ionov, D.A., Boyd, F.R., Dreibus, G.E., Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem. Geol. 208 (2004), 29–59. 82. Pearson, D.G., Wittig, N., Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. Lond. 165 (2008), 895–914. 83. Pearson, D.G., Wittig, N., The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths, Treatise on Geochemistry. second ed., 2014, Elsevier, Oxford, 255–292. 84. Pernet-Fisher, J.F., Howarth, G.H., Pearson, D.G., Woodland, S., Barry, P.H., Pokhilenko, N.P., Pokhilenko, L.N., Agashev, A.M., Taylor, L.A., Plume impingement on the Siberian SCLM: evidence from Re–Os isotope systematics. Lithos 218–219 (2015), 141–154. 85. Press, S., Witt, G., Seck, H.A., Eonov, D., Kovalenko, V.I., Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: Major element chemistry and mineralogy of a primitive mantle xenolith suite. Geochim. Cosmochim. Acta 50 (1986), 2587–2599. 86. Rehfeldt, T., Foley, S.F., Jacob, D.E., Carlson, R.W., Lowry, D., Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim. Cosmochim. Acta 72 (2008), 5722–5756. 87. Rudnick, R.L., Gao, S., Ling, W.-L., Liu, Y.-S., McDonough, W.F., Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77 (2004), 609–637. 88. Rudnick, R.L., McDonough, W.F., Chappell, B.C., Carbonatite metasomatism in the northern Tanzanian mantle. Earth Planet. Sci. Lett. 114 (1993), 463–475. 89. Rudnick, R.L., Walker, R.J., Interpreting ages from Re–Os isotopes in peridotites. Lithos 112:Suppl. 2 (2009), 1083–1095. 90. Salters, V.J.M., Stracke, A., Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, 2004, Q05004. 91. Smith, D., Genesis of carbonate in pyrope from ultramafic diatremes on the Colorado Plateau, southwestern US. Contrib. Mineral. Petrol. 97 (1987), 389–396. 92. Snyder, D.B., Humphreys, E., Pearson, D.G., Construction and destruction of some North American cratons. Tectonophysics 694 (2017), 464–485. 93. Snyder, G.A., Taylor, L.A., Crozaz, G., Halliday, A., Beard, B.L., Sobolev, V.N., Sobolev, N.V., The origins of Yakutian eclogite xenoliths. J. Petrol. 38 (1997), 85–113. 94. Sobolev, N.V., Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. 1977, American Geophysical Union, Washington, D.C. 95. Spetsius, Z.V., Serenko, V.P., Composition of the continental upper mantle and lower crust beneath the Siberian Platform. 1990, Nauka, Moscow. 96. Streckeisen, A., To each plutonic rock its proper name. Earth Sci. Rev. 12 (1976), 1–33. 97. Sun, J., Liu, C.-Z., Tappe, S., Kostrovitsky, S.I., Wu, F.-Y., Yakovlev, D., Yang, Y.-H., Yang, J.-H., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 404 (2014), 283–295. 98. Takahashi, N., Frey, F.A., Shimizu, N., Obata, M., Bodinier, J.L., Geochemical evidence for melt migration and reaction in the upper mantle. Nature, 359, 1992, 55. 99. Takazawa, E., Frey, F.A., Shimizu, N., Obata, M., Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process. Geochim. Cosmochim. Acta 64 (2000), 695–716. 100. Tang, Y.-J., Zhang, H.-F., Ying, J.-F., Su, B.-X., Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci. Rev. 118 (2013), 45–68. 101. Taylor, L.A., Snyder, G.A., Keller, R., Remley, D.A., Anand, M., Wiesli, R., Valley, J., Sobolev, N.V., Petrogenesis of group-A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contrib. Mineral. Petrol. 145 (2003), 424–443. 102. Tursack, E., Liang, Y., A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations. Contrib. Miner. Petrol. 163 (2012), 861–876. 103. Ukhanov, A.B., Ryabchikov, I.D., Kharkiv, A.D., Lithospheric Mantle of the Yakutian Kimberlite Province. 1988, Nauka, Moscow. 104. van Achterbergh, E., Ryan, C., Jackson, S., Griffin, W., Data reduction software for LA-ICP-MS. Sylvester, P., (eds.) Laser Ablation-ICPMS in the Earth Science, 2001, Mineral. Assoc., Canada, 239–243. 105. Walter M. J. (1999) Melting residues of fertile peridotite and the origin of cratonic lithosphere. In: Mantle Petrology: Field Observations and High-Pressure Experimentation. Spec. Publ. Geochem. (eds. Y. Fei, C. M. Bertka, B. O. Mysen). Soc. No. 6 Geochemical Society, Houston. pp. 225–239. 106. Walter, M.J., Melt extraction and compositional variability in mantle lithosphere. Carlson, R.W., (eds.) Treatise on Geochemistry The Mantle and Core, vol. 2, 2003, Elsevier, Amsterdam, 363–394. 107. Wang, C., Liang, Y., Dygert, N., Xu, W., Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt: an experimental study. Contrib. Miner. Petrol. 171 (2016), 1–18. 108. Wang, H., van Hunen, J., Pearson, D.G., The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16 (2015), 1156–1171. 109. Wiechert, U., Ionov, D.A., Wedepohl, K.H., Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib. Mineral. Petrol. 126 (1997), 345–364. 110. Wölbern, I., Rümpker, G., Link, K., Sodoudi, F., Melt infiltration of the lower lithosphere beneath the Tanzania craton and the Albertine rift inferred from S receiver functions. Geochem. Geophys. Geosyst., 13, 2012, Q0AK08. 111. Xu, Y., Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Phys. Chem. Earth (A) 26 (2001), 747–757. 112. Yaxley, G.M., Crawford, A.J., Green, D.H., Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet. Sci. Lett. 107 (1991), 305–317. 113. Yaxley, G.M., Green, D.H., Kamenetsky, V., Carbonate metasomatism in the southeastern Australian lithosphere. J. Petrol. 39 (1998), 1917–1931. 114. Zhang, H.-F., Goldstein, S., Zhou, X.-H., Sun, M., Zheng, J.-P., Cai, Y., Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib. Miner. Petrol. 155 (2008), 271–293. 115. Ziberna, L., Klemme, S., Nimis, P., Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib. Miner. Petrol. 166 (2013), 411–421.