Цитирование: | 1. Brooker, M.H., Bates, J.B., On the structure of the cubic crystals: Ca(NO3)2, Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. An Infrared and Raman study. Spectrochim. Acta A 29 (1973), 439–452.
2. Holden, J.R., Dickinson, C.W., Golden Book of Phase Transitions. 2002, 1–123 Wroclaw.
3. Ezhil Vizhi, R., Rajan Babu, D., A study on structural, optical, mechanical and ferroelectric properties of Tri-Glycine barium nitrate single crystals. Ferroelectric. Lett. 40 (2013), 1–10.
4. Benages-Vilau, R., Calvet, T., Cuevas-Diarte, M.A., Polymorphism, crystal growth, crystal morphology and solid-state miscibility of alkali nitrates. Crystallogr. Rev. 20 (2014), 25–55.
5. Zou, Guohong, Lin, Chensheng, Kim, Hyung Gu, Jo, Hongil, Ok, Kang Min, Rb2Na(NO3)3: a congruently melting UV-NLO crystal with a very strong second-harmonic generation response. Crystals, 6, 2016, 42.
6. Kidyarov, B.I., Rozhkov, A.F., Zarubina, K.E., Zherebtsov, D.A., Vinnik, D.A., Sharutin, V.V., Pervukhina, N.V., Kuratieva, N.V., Isaenko, L.I., Yelisseyev, A.P., Tarasova, A.Yu, New nonlinear crystal K2Ba(NO3)4: growth, structure, optical properties and thermal transformations. J. Optic., 2017 in press.
7. Shtukenberg, G., Euler, H., Kirfel, A., Popov, D.Yu, Symmetry reduction and cation ordering in solid solutions of strontium-lead and barium-lead nitrates. Z. Kristallogr. 221 (2006), 681–688.
8. Kashcheeva, N.E., Naumov, D.Y., Boldyreva, E.V., Software for calculating Dirichlet domains and examples of its application for the analysis of crystal structures of cobalt(III)nitropentaammines. Z. Kristallogr. 214 (1999), 534–541.
9. Goryainov, S.V., Krylov, A.S., Vtyurin, A.N., Pan, Y., Raman study of datolite CaBSiO4(OH) at simultaneously high pressure and high temperature. J. Raman Spectrosc. 46 (2015), 177–181.
10. Goryainov, S.V., Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)⋅12H2O at high pressure. J. Raman Spectrosc. 47 (2016), 984–992.
11. Model S506 Interactive Peak Fit, User's Manual, 2002, Canberra Industries Inc., Canberra.
12. Smirnov, M.B., Kazimirov, V.Y., LADY: Software for Lattice Dynamics Simulations. (Preprint), 2001, Joint Institute for Nuclear Research, Dubna.
13. Smirnov, M.B., Mirgorodsky, A.P., Quintard, P., CRYME: a program for simulating structural, vibrational, elastic, piezoelectric and dielectric properties of materials within a phenomenological model of their potential functions. J. Mol. Struct. 348 (1995), 159–162.
14. Goryainov, S.V., Smirnov, M.B., Raman spectra and lattice-dynamical calculations of natrolite. Eur. J. Mineral 13 (2001), 507–519.
15. Mirgorodsky, A.P., Smirnov, M.B., Quintard, P.E., Phonon spectra evolution and soft-mode instabilities of zirconia during the c–t–m transformation. J. Phys. Chem. Solid. 60 (1999), 985–992.
16. Goryainov, S.V., Pan, Y., Smirnov, M.B., Sun, W., Mi, J.-X., Raman investigation on the behavior of parasibirskite CaHBO3 at high pressure. Spectrochim. Acta A 173 (2017), 46–52.
17. Henrich, V.E., Cox, P.A., The Surface Science of Metal Oxides. 1994, Cambridge University Press, Cambridge.
18. Atuchin, V.V., Khyzhun, O.Y., Chimitova, O.D., Molokeev, M.S., Gavrilova, T.A., Bazarov, B.G., Bazarova, J.G., Synthesis and electronic properties of β-RbNd(MoO4)2. J. Phys. Chem. Solid. 77 (2015), 101–108.
19. Solodovnikov, S.F., Atuchin, V.V., Solodovnikova, Z.A., Khyzhun, O.Y., Danylenko, M.I., Pishchur, D.P., Plyusnin, P.E., Pugachev, A.M., Gavrilova, T.A., Yelisseyev, A.P., Reshak, A.H., Alahmed, Z.A., Habubi, N.F., Synthesis, structural, thermal, and electronic properties of palmierite-related double molybdate α-Cs2Pb(MoO4)2. Inorg. Chem. 56 (2017), 3276–3286.
20. Rajagopal, S., Bharaneswari, M., Nataraj, D., Khyzhun, O.Y., Djaoued, Y., Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of 2,2′-dipyridyl intercalated MoO3 hybrid nanostructures and investigation of their photocatalytic activity. RSC Adv. 6 (2016), 88287–88299.
21. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., DalCorso, A., Fabris, S., Fratesi, G., deGironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., J. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 2009, 395502 (19 pp.).
22. http://www.quantum-espresso.org/pseudopotentials.
23. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868.
24. Bon, A.M., Benoit, C., Giordan, J., Dynamical properties of crystals of Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. II. Temperature dependence of the infrared spectra. Phys. Status Solidi 78 (1976), 453–464.
25. Practical surface analysis., second ed. Briggs, D., Seach, P.M., (eds.) Auger and X-Ray Photoelectron Spectroscopy, vol. 1, 1990, John Willey & Sons Ltd., Chichester.
26. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., (eds.) Handbook of X-ray Photoelectron Spectroscopy, 1979, Perkin-Elmer Corp., Phys. Elect. Div., Minesota.
27. Nefedov, V.I., X-Ray Electron Spectroscopy of Chemical Compounds. 1984, Khimia, Moscow.
28. Burger, K., Tschismarov, F., Ebel, H., XPS/ESCA applied to quick-frozen solutions. I. – a study of nitrogen compounds in aqueous solutions. J. Electron. Spectrosc. Relat. Phenom. 10 (1977), 461–465.
29. Salyn, YaV., Titova, K.V., Russ. J. Inorg. Chem. 22 (1977), 2998–3003.
30. Folkesson, B., ESCA studies on the charge distribution in some dinitrogen complexes of rhenium, iridium, ruthenium, and osmium. Acta Chem. Scand. 27 (1969), 287–302.
31. Hendrickson, D.N., Hollander, J.M., Jolly, W.L., Nitrogen 1s electron binding energies. Correlations with molecular orbital calculated nitrogen charges. Inorg. Chem. 8 (1969), 2642–2647.
32. Ramana, C.V., Atuchin, V.V., Becker, U., Ewing, R.C., Isaenko, L.I., Khyzhun, O.Y., Merkulov, A.A., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. C 111 (2007), 2702–2708.
33. Atuchin, V.V., Pokrovsky, L.D., Khyzhun, O.Y., Sinelnichenko, A.K., Ramana, C.V., Surface crystallography and electronic structure of potassium yttrium tungstate. J. Appl. Phys., 104, 2008, 033518.
34. Atuchin, V.V., Isaenko, L.I., Khyzhun, O.Y., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Structural and electronic properties of the KTiOAsO4(001) surface. Opt. Mater. 30 (2008), 1149–1152.
35. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Sinelnichenko, A.K., Isaenko, L.I., Electronic structure of KTiOAsO4: a comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy. J. Alloy. Comp. 477 (2009), 768–775.
36. Bekenev, V.L., Khyzhun, O.Y., Atuchin, V.V., Electronic structure of monoclinic α-KY(WO4)2 tungstate as determined from first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloy. Comp. 485 (2009), 51–58.
37. Atuchin, V.V., Khyzhun, O.Y., Bekenev, V.L., Sinelnichenko, A.K., Isaenko, L.I., Zhurkov, S.A., Electronic structure of KTiOAsO4, a novel material for non-linear optical applications. Proc. SPIE, 8772, 2013, 87721I.
38. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Denysyuk, N.M., Shkumat, P.N., Tarasova, A.Y., Isaenko, L.I., Khyzhun, O.Y., Specific features of the electronic structure and optical properties of KPb2Br5: DFT calculations and X-ray spectroscopy measurements. Opt. Mater. 53 (2016), 64–72.
39. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Galashov, E.N., Shlegel, V.N., Electronic properties of ZnWO4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data. Mater. Chem. Phys. 140 (2013), 588–595.
40. Ghotbi, M., Sun, Z., Majchrowski, A., Michalski, E., Kityk, I.V., Ebrahim-Zadeh, M., Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6. Appl. Phys. Lett., 89, 2006, 173124.
41. Petrov, V., Ghotbi, M., Kokabee, O., Esteban-Martin, A., Noack, F., Gaydardzhiev, A., Nikolov, I., Tzankov, P., Buchvarov, I., Miyata, K., Majchrowski, A., Kityk, I.V., Femtosecond nonlinear frequency conversion based on BiB3O6. Laser Photon. Rev. 4 (2010), 53–98.
|