Инд. авторы: Isaenko L.I., Korzhneva K.E., Goryainov S.V., Goloshumova A.A, Sheludyakova L.A., Bekenev V.L., Khyzhun O.Y.
Заглавие: Structural, optical and electronic properties of K2Ba(NO3)(4) crystal
Библ. ссылка: Isaenko L.I., Korzhneva K.E., Goryainov S.V., Goloshumova A.A, Sheludyakova L.A., Bekenev V.L., Khyzhun O.Y. Structural, optical and electronic properties of K2Ba(NO3)(4) crystal // Physica B: Condensed Matter. - 2018. - Vol.531. - P.149-158. - ISSN 0921-4526.
Внешние системы: DOI: 10.1016/j.physb.2017.12.035; РИНЦ: 35508579; SCOPUS: 2-s2.0-85038827869; WoS: 000424809500024;
Реферат: eng: Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)(4) double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 degrees C and low rate evaporation. The structural analysis of K2Ba(NO3)(4) formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)(4) crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)(4) was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Arthorn ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)(4) have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)(4) except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p* states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Ka band for the K2Ba(NO3)(4) crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)(4) compound is a direct-gap material.
Ключевые слова: BA(NO3)2; SR(NO3)2; KTIOASO4; PB(NO3)2; MORPHOLOGY; TEMPERATURE; SPECTRA; HIGH-PRESSURE; Ab initio calculations; X-ray emission spectroscopy; X-ray photoelectron spectroscopy; Optical properties; Electronic structure; SPECTROSCOPY; XPS;
Издано: 2018
Физ. характеристика: с.149-158
Цитирование: 1. Brooker, M.H., Bates, J.B., On the structure of the cubic crystals: Ca(NO3)2, Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. An Infrared and Raman study. Spectrochim. Acta A 29 (1973), 439–452. 2. Holden, J.R., Dickinson, C.W., Golden Book of Phase Transitions. 2002, 1–123 Wroclaw. 3. Ezhil Vizhi, R., Rajan Babu, D., A study on structural, optical, mechanical and ferroelectric properties of Tri-Glycine barium nitrate single crystals. Ferroelectric. Lett. 40 (2013), 1–10. 4. Benages-Vilau, R., Calvet, T., Cuevas-Diarte, M.A., Polymorphism, crystal growth, crystal morphology and solid-state miscibility of alkali nitrates. Crystallogr. Rev. 20 (2014), 25–55. 5. Zou, Guohong, Lin, Chensheng, Kim, Hyung Gu, Jo, Hongil, Ok, Kang Min, Rb2Na(NO3)3: a congruently melting UV-NLO crystal with a very strong second-harmonic generation response. Crystals, 6, 2016, 42. 6. Kidyarov, B.I., Rozhkov, A.F., Zarubina, K.E., Zherebtsov, D.A., Vinnik, D.A., Sharutin, V.V., Pervukhina, N.V., Kuratieva, N.V., Isaenko, L.I., Yelisseyev, A.P., Tarasova, A.Yu, New nonlinear crystal K2Ba(NO3)4: growth, structure, optical properties and thermal transformations. J. Optic., 2017 in press. 7. Shtukenberg, G., Euler, H., Kirfel, A., Popov, D.Yu, Symmetry reduction and cation ordering in solid solutions of strontium-lead and barium-lead nitrates. Z. Kristallogr. 221 (2006), 681–688. 8. Kashcheeva, N.E., Naumov, D.Y., Boldyreva, E.V., Software for calculating Dirichlet domains and examples of its application for the analysis of crystal structures of cobalt(III)nitropentaammines. Z. Kristallogr. 214 (1999), 534–541. 9. Goryainov, S.V., Krylov, A.S., Vtyurin, A.N., Pan, Y., Raman study of datolite CaBSiO4(OH) at simultaneously high pressure and high temperature. J. Raman Spectrosc. 46 (2015), 177–181. 10. Goryainov, S.V., Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)⋅12H2O at high pressure. J. Raman Spectrosc. 47 (2016), 984–992. 11. Model S506 Interactive Peak Fit, User's Manual, 2002, Canberra Industries Inc., Canberra. 12. Smirnov, M.B., Kazimirov, V.Y., LADY: Software for Lattice Dynamics Simulations. (Preprint), 2001, Joint Institute for Nuclear Research, Dubna. 13. Smirnov, M.B., Mirgorodsky, A.P., Quintard, P., CRYME: a program for simulating structural, vibrational, elastic, piezoelectric and dielectric properties of materials within a phenomenological model of their potential functions. J. Mol. Struct. 348 (1995), 159–162. 14. Goryainov, S.V., Smirnov, M.B., Raman spectra and lattice-dynamical calculations of natrolite. Eur. J. Mineral 13 (2001), 507–519. 15. Mirgorodsky, A.P., Smirnov, M.B., Quintard, P.E., Phonon spectra evolution and soft-mode instabilities of zirconia during the c–t–m transformation. J. Phys. Chem. Solid. 60 (1999), 985–992. 16. Goryainov, S.V., Pan, Y., Smirnov, M.B., Sun, W., Mi, J.-X., Raman investigation on the behavior of parasibirskite CaHBO3 at high pressure. Spectrochim. Acta A 173 (2017), 46–52. 17. Henrich, V.E., Cox, P.A., The Surface Science of Metal Oxides. 1994, Cambridge University Press, Cambridge. 18. Atuchin, V.V., Khyzhun, O.Y., Chimitova, O.D., Molokeev, M.S., Gavrilova, T.A., Bazarov, B.G., Bazarova, J.G., Synthesis and electronic properties of β-RbNd(MoO4)2. J. Phys. Chem. Solid. 77 (2015), 101–108. 19. Solodovnikov, S.F., Atuchin, V.V., Solodovnikova, Z.A., Khyzhun, O.Y., Danylenko, M.I., Pishchur, D.P., Plyusnin, P.E., Pugachev, A.M., Gavrilova, T.A., Yelisseyev, A.P., Reshak, A.H., Alahmed, Z.A., Habubi, N.F., Synthesis, structural, thermal, and electronic properties of palmierite-related double molybdate α-Cs2Pb(MoO4)2. Inorg. Chem. 56 (2017), 3276–3286. 20. Rajagopal, S., Bharaneswari, M., Nataraj, D., Khyzhun, O.Y., Djaoued, Y., Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of 2,2′-dipyridyl intercalated MoO3 hybrid nanostructures and investigation of their photocatalytic activity. RSC Adv. 6 (2016), 88287–88299. 21. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., DalCorso, A., Fabris, S., Fratesi, G., deGironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., J. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 2009, 395502 (19 pp.). 22. http://www.quantum-espresso.org/pseudopotentials. 23. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868. 24. Bon, A.M., Benoit, C., Giordan, J., Dynamical properties of crystals of Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. II. Temperature dependence of the infrared spectra. Phys. Status Solidi 78 (1976), 453–464. 25. Practical surface analysis., second ed. Briggs, D., Seach, P.M., (eds.) Auger and X-Ray Photoelectron Spectroscopy, vol. 1, 1990, John Willey & Sons Ltd., Chichester. 26. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., (eds.) Handbook of X-ray Photoelectron Spectroscopy, 1979, Perkin-Elmer Corp., Phys. Elect. Div., Minesota. 27. Nefedov, V.I., X-Ray Electron Spectroscopy of Chemical Compounds. 1984, Khimia, Moscow. 28. Burger, K., Tschismarov, F., Ebel, H., XPS/ESCA applied to quick-frozen solutions. I. – a study of nitrogen compounds in aqueous solutions. J. Electron. Spectrosc. Relat. Phenom. 10 (1977), 461–465. 29. Salyn, YaV., Titova, K.V., Russ. J. Inorg. Chem. 22 (1977), 2998–3003. 30. Folkesson, B., ESCA studies on the charge distribution in some dinitrogen complexes of rhenium, iridium, ruthenium, and osmium. Acta Chem. Scand. 27 (1969), 287–302. 31. Hendrickson, D.N., Hollander, J.M., Jolly, W.L., Nitrogen 1s electron binding energies. Correlations with molecular orbital calculated nitrogen charges. Inorg. Chem. 8 (1969), 2642–2647. 32. Ramana, C.V., Atuchin, V.V., Becker, U., Ewing, R.C., Isaenko, L.I., Khyzhun, O.Y., Merkulov, A.A., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. C 111 (2007), 2702–2708. 33. Atuchin, V.V., Pokrovsky, L.D., Khyzhun, O.Y., Sinelnichenko, A.K., Ramana, C.V., Surface crystallography and electronic structure of potassium yttrium tungstate. J. Appl. Phys., 104, 2008, 033518. 34. Atuchin, V.V., Isaenko, L.I., Khyzhun, O.Y., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Structural and electronic properties of the KTiOAsO4(001) surface. Opt. Mater. 30 (2008), 1149–1152. 35. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Sinelnichenko, A.K., Isaenko, L.I., Electronic structure of KTiOAsO4: a comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy. J. Alloy. Comp. 477 (2009), 768–775. 36. Bekenev, V.L., Khyzhun, O.Y., Atuchin, V.V., Electronic structure of monoclinic α-KY(WO4)2 tungstate as determined from first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloy. Comp. 485 (2009), 51–58. 37. Atuchin, V.V., Khyzhun, O.Y., Bekenev, V.L., Sinelnichenko, A.K., Isaenko, L.I., Zhurkov, S.A., Electronic structure of KTiOAsO4, a novel material for non-linear optical applications. Proc. SPIE, 8772, 2013, 87721I. 38. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Denysyuk, N.M., Shkumat, P.N., Tarasova, A.Y., Isaenko, L.I., Khyzhun, O.Y., Specific features of the electronic structure and optical properties of KPb2Br5: DFT calculations and X-ray spectroscopy measurements. Opt. Mater. 53 (2016), 64–72. 39. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Galashov, E.N., Shlegel, V.N., Electronic properties of ZnWO4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data. Mater. Chem. Phys. 140 (2013), 588–595. 40. Ghotbi, M., Sun, Z., Majchrowski, A., Michalski, E., Kityk, I.V., Ebrahim-Zadeh, M., Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6. Appl. Phys. Lett., 89, 2006, 173124. 41. Petrov, V., Ghotbi, M., Kokabee, O., Esteban-Martin, A., Noack, F., Gaydardzhiev, A., Nikolov, I., Tzankov, P., Buchvarov, I., Miyata, K., Majchrowski, A., Kityk, I.V., Femtosecond nonlinear frequency conversion based on BiB3O6. Laser Photon. Rev. 4 (2010), 53–98.